Skip to main content
Log in

Comparison between total and ultrafiltrable serum zinc as test to diagnose zinc deficiency in infants and children

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Total Serum Zinc (TSZn) and albumin were determined, and low molecular weight serum Zn measured by radiochemical Ultra-Filtration (UFSZn) in healthy Dutch infants and children, and in samples obtained from those with diseases that are expected to alter TSZn.

Our control TSZn values, 10.2±3.5 μmol/L, were low compared to those reported in the literature. Variation in serum albumin could not explain this: No correlation of TSZn with serum albumin was found (p>0.5). Likely explanations are the nonfasting state and the stress owing to hospital surroundings at the time of sampling. A range of other influences not registered may be active and are discussed. No significant age-dependence was found (p<0.8). Boys over 9 yr of age showed higher TSZn compared with girls of the same age (p<0.08). In a separate experiment a 17% decrease in TSZn was demonstrated by food intake (eggs). These results support the opinion that TSZn is of little value to measure Zn status. There was no discrimination in TSZn between healthy subjects and patients.

Our UFSZn values, 0.28±0.13 μmol/L in the controls as well as in the patients, were correlated with TSZn and therefore not a suitable alternative for the measurement of TSZn as parameter to determine the Zn status. The UFSZn was not correlated with serum albumin (p>0.7). UFSZn values were higher in infants (p<0.01), no sex dependence was found. We conclude that TSZn as well as UFSZn are of limited clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Vallee,J. Inher. Metab. Dis. 6(suppl.),1, 31 (1983).

    Article  PubMed  CAS  Google Scholar 

  2. A. Klug and D. Rhodes,Trends Biochem. Sci. 12, 464 (1987).

    Article  CAS  Google Scholar 

  3. M. S. Lee,Science 245, 635 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. R. Berfenstam,Acta Paediatr. 41(suppl.), 87 (1952).

    Article  Google Scholar 

  5. H. H. Hellwege,Monatschr. Kinderheilk. 119, 37 (1971).

    CAS  Google Scholar 

  6. K. Kasperek, L. E. Feinendegen, I. Lombeck, and H. J. Bremer,Eur. J. Pediatr. 126, 199 (1977).

    Article  PubMed  CAS  Google Scholar 

  7. R. Laitinen, E. Vuori, S. Dahlström, and H. V. Äkerblom,Ped. Res. 25, 323 (1989).

    Article  CAS  Google Scholar 

  8. R. Laitinen,Biol. Trace Elem. Res. 25, 71 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. S. M. Pilch, and R. Senti (eds.),Assessment of the zinc nutritional status of the U.S. population based on data collected in the second national health and nutrition examination survey, 1976–1980. Life Sciences Research Office, FASEB, Bethesda MD (1984).

    Google Scholar 

  10. T. Hongo, T. Suzuki, T. Ohba, K. Karita, Y. Dejima, J. Yoshinaga, M. Togo, H. Ishida, H. Suzuki, and E. Hisatsune,J. Nutr. Sci. Vitaminol. 38, 177 (1992).

    PubMed  CAS  Google Scholar 

  11. H. Fauré, A. Favier, M. Tripier, and J. Arnaud,Biol. Trace Elem. Res. 24, 25 (1990).

    Article  PubMed  Google Scholar 

  12. J. C. Van Wieringen, M. J. Roede, and J. M. Wit,Tijdschr. Kindergeneesk. 53, 147 (1985).

    Google Scholar 

  13. K. E. C. De Haan, C. J. De Groot, C. J. A. Van den Hamer, and H. Boxma,Clin. Chim. Acta 170, 111 (1987).

    Article  PubMed  Google Scholar 

  14. R. C. Whitehouse, A. S. Prasad, and Z. T. Cossack,Clin. Chem. 29, 1974 (1983).

    PubMed  CAS  Google Scholar 

  15. E. L. Giroux, D. Durieux, and P. Schechter,Bioinorg. Chem. 5, 211 (1976).

    Article  PubMed  CAS  Google Scholar 

  16. M. Persigehl, A. Höck, K. Kasperek, E. Land, and L. E. Feinendegen,Zeitschr. Klin. Chem. Klin. Biochem. 12, 171 (1974).

    CAS  Google Scholar 

  17. D. McMaster, E. McCrum, C. C. Patterson, M. McKerr, D. O'Reilly, A. E. Evans, and A. H. G. Love,Am. J. Clin. Nutr. 56, 440 (1992).

    PubMed  CAS  Google Scholar 

  18. C. E. Casey, P. A. Walravens, and K. M. Hambidge,Am. J. Clin. Nutr. 34, 1443 (1981).

    PubMed  CAS  Google Scholar 

  19. A. S. Prasad,J. Am. Coll. Nutr. 4, 591 (1985).

    PubMed  CAS  Google Scholar 

  20. B. E. Walker, I. Bone, B. H. Mascie-Taylor, and J. Kelleher,Int. J. Vit. Nutr. Res. 49, 413 (1979).

    CAS  Google Scholar 

  21. M. E. Markowitz, J. F. Rosen, and M. Mizruchi,Am. J. Clin. Nutr. 41, 689 (1985).

    PubMed  CAS  Google Scholar 

  22. H. Ohno, K. Yamashita, R. Doi, K. Yamamura, T. Kondo, and N. Taniguchi,J. Appl. Physiol. 58(5) 1453 (1985).

    PubMed  CAS  Google Scholar 

  23. J. C. Wallwork,Biol. Trace Elem. Res. 12, 335 (1987).

    Article  CAS  Google Scholar 

  24. M. T. Baer, and J. C. King,Am. J. Clin. Nutr. 39, 556 (1984).

    PubMed  CAS  Google Scholar 

  25. J. P. Van Wouwe, H. H. Van Gelderen, and J. H. Bos,Eur. J. Pediatr. 146, 293 (1987).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Wouwe, J.P., Waser, I. Comparison between total and ultrafiltrable serum zinc as test to diagnose zinc deficiency in infants and children. Biol Trace Elem Res 40, 203–211 (1994). https://doi.org/10.1007/BF02950793

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02950793

Index Entries

Navigation