Skip to main content
Log in

Use ofK L a as a criterion for scaling up the inulinase fermentation process

  • Session 4 Process Economics and Commercialization
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The scale-up of inulinase production in aerated cultures ofCandida kefyr DSM 70106 was studied, taking into account the criterion of maintainingK L a constant. The culture was carried out batchwise, in a 15-L fermentor, withK L a varying from 25 to 199 h−1. The highest inulinase production was attained with an initialK L a value of 46 h−1. A large scale fermentation (300-L fermentor) was performed using identical culture medium conditions. The responses obtained for the bench and scaled-up experiments showed similar behaviors, and the results were, respectively, 0.60 and 0.58 U·mL−1·h−1 for productivity and 43.0 and 41.5 U·mL−1 for activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Yx/s :

ΔX/ΔS

productivity (Pr):

ΔP/Δt

μx(max) :

maximum specific growth rate obtained from the slope of ln(x) as a function of time in the cell growth logarithmic phase

U·g −1cel (max) :

specific enzymatic activity

References

  1. Kierstan, M. (1980),Process Biochem. May, 2–4.

  2. Kaur, N., Kaur, M., Gupta, A. K., and Singh, R. (1992),J. Chem. Technol. Biotechnol. 53, 279–284.

    CAS  Google Scholar 

  3. Barman, T. E. (1969), inEnzyme Handbook. Springer-Verlag, Berlin, p. 928.

    Google Scholar 

  4. Manzoni, M. and Cavazzoni, V. (1992),J. Chem. Technol. Biotechnol. 54, 311–315.

    CAS  Google Scholar 

  5. Mukherjee, K. and Sengupta, S. (1985),Can. J. Microbiol. 31, 773–777.

    Article  CAS  Google Scholar 

  6. Lam, K. S. and Grootwassink, J. W. D. (1985),Enzyme Microb. Technol. 7, 239–242.

    CAS  Google Scholar 

  7. Kim, W. Y., Byun, S. M., and Nahm, B. H. (1979),Korean J. Food Sci. Technol. 11, 283–290.

    CAS  Google Scholar 

  8. Claessens, G., Van Laere, A., and De Proft, M. (1990),J. Plant Physiol. 136, 35–39.

    CAS  Google Scholar 

  9. Manzoni, M. and Cavazzoni, V. (1988),Lebensm. Wiss. Technol 21, 271–274.

    CAS  Google Scholar 

  10. Parekh, S. and Margaritis, A. (1986),Agriculture Biol. Chem. 50, 1085–1087.

    CAS  Google Scholar 

  11. Tong, G. E. and Inloes, D. S. (1990), CHEMTECH,Sept., 567–573.

  12. Taciro, M. K., Santos, M., Facciotti, M. C. R., and Schmidell, W. (1994), in10° Congresso Brasileiro de Engenharia Quimica, São Paulo, 2, pp. 1337–1341.

  13. Oosterhuis, N. M. G. and Kossen, N. W. F. (1984),Biotechnol. Bioeng. 26, 548–550.

    Article  Google Scholar 

  14. Pirt, S. J. (1975), inPrinciples of Microbe and Cell Cultivation, Blackwell Scientific Publications, Oxford, p. 274.

    Google Scholar 

  15. Yang, X.-M., Mao, Z.-X., and Yang, S.-Z. (1988),Biotechnol. Bioeng. 31, 1006–1009.

    Article  CAS  Google Scholar 

  16. Aiba, S., Humphrey, A. E., and Millis, N. F. (1973), inBiochem. Eng., Academic, New York, p. 434.

    Google Scholar 

  17. Renscher, H. E. (1963),Klin. Wochenschr. 41, 615–617.

    Article  Google Scholar 

  18. Le Duy, A. and Zajic, J. E. (1973),Biotechnol. Bioeng. 15, 805–815.

    Article  Google Scholar 

  19. Wise, W. S. (1951),J. Gen. Microbiol. 5, 167–177.

    CAS  Google Scholar 

  20. Borzani, W. (1993),Rev. Microbiol. 24, 278–280.

    Google Scholar 

  21. Allais, J.-J., Kammoun, S., Blanc, P., Girard, C., and Baratti, J. (1986),Appl. Environ. Microbiol. 52, 1086–1090.

    CAS  Google Scholar 

  22. Looten, P., Blanchet, D., and Vandecasteele, J. P. (1987),Appl. Microbiol. Biotechnol. 25, 419–425.

    Article  CAS  Google Scholar 

  23. Derycke, D. G. and Vandamme, E. J. (1984),J. Chem. Technol. Biotechnol. 34B, 45–51.

    Google Scholar 

  24. Elyachiou, M., Hornez, J. P., and Tailliez, R. (1992),J. Appl. Bacteriol. 73, 514.

    Google Scholar 

  25. Manzoni, M. and Cavazzoni, V. (1991),Lebensm. Wiss. Technol. 24, 236.

    CAS  Google Scholar 

  26. Drent, W.J., Greetje, A.L., Wim, M.W., and Gottschal, J.C. (1991),Appl. Environ. Microbiol. 57, 455.

    CAS  Google Scholar 

  27. Grootwassink, J. W. D. and Fleming, S. E. (1980),Enzyme Microb. Technol. 2, 45.

    Article  CAS  Google Scholar 

  28. Parekh, S. and Margaritis, A. (1985),Appl. Microbiol. Biotechnol. 22, 446.

    Article  CAS  Google Scholar 

  29. Allais, J.-J., Hoyos-Lopez, G., and Baratti, J. (1987),Carbohydr. Polymer 77, 277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pessoa, A., Vitolo, M. & Hustedt, H. Use ofK L a as a criterion for scaling up the inulinase fermentation process. Appl Biochem Biotechnol 57, 699–709 (1996). https://doi.org/10.1007/BF02941752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941752

Index Entries

Navigation