Skip to main content
Log in

Analysis of rice mitochondrial genome organization using pulsed-field gel electrophoresis

  • Articles
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Most of the plant mitochondrial (mt) genomes that have been mapped are believed to be organized as master circle molecules from which sub-genomic molecules arise through homologous recombination. We have evidence to suggest that a major part of the rice mt genome is organized as independent, sub-genomic molecules or mt chromosomes, one of which has already been mapped. This study is aimed at the identification of the other molecular entities that comprise the genome.

Pulsed-field gel electrophoresis of the native rice mt DNA and Southern analysis with different mt gene probes have shown that in addition to the 117 kb mt chromosome, at least four more such molecules of sizes 130 kb, 95 kb, 70 kb and 56 kb account for most of the rice mt genome. A majority of the rice mt genes that encode products involved in oxidative phosphorylation are distributed among these five chromosomes. Partial restriction map of the 95 kborf 25/cox 3 chromosome, indicating the sites for the enzymesBglII andHindIII has also been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendich A J 1993 Reaching for the ring: the study of mitochondrial genome;Curr. Genet. 24 279–290

    Article  CAS  Google Scholar 

  • Braun C J and Levings III C S 1985 Nucleotide Sequence of the F1-Atpase α-subunit gene from maize mitochondria;Plant Physiol. 79 571–577

    Article  CAS  Google Scholar 

  • Bendich A J, Loretz C J and Monnat R J Jr 1993 The structure of the plant mitochondrial genome; inPlant mitochondria (eds) A Brennicke and U Kuck (VCH Weinheim) pp 171–180

    Google Scholar 

  • Bendich A J and Smith S B 1990 Moving pictures and pulsedfield gel electrophoresis show linear DNA molecules from chloroplast and mitochondria;Curr. Genet. 17 421–425

    Article  CAS  Google Scholar 

  • Chu G, Vollrath D and Davis R W 1986 Separation of large DNA molecules by contour-clamped homogeneous electric fields;Science 234 1582–1585

    Article  CAS  Google Scholar 

  • Dewey R E, Levings III C S and Timothy D H 1985 Nucleotide sequence of ATPase subunit 6 gene of maize mitochondria;Plant Physiol. 79 914–919

    Article  CAS  Google Scholar 

  • Hiesel R, Schobel W, Schuster W and Brennicke A 1987 The Cytochrome oxidase subunit I and subunitIII genes in Oenothera mitochondria are transcribed from identical promoter sequences;EMBO J. 6 29–34

    Article  CAS  Google Scholar 

  • Houchins J P, Ginsburg H, Rohrbaugh M, Dale R M K, Schardl C L, Hodge T P and Lonsdale D M 1986 DNA sequence analysis of a 5.27 kb direct repeat occurring adjacent to the regions of S-episome homology in maize mitochondria;EMBO J. 5 2781–2788

    Article  CAS  Google Scholar 

  • Iwahashi M, Nakazono M, Kanno A, Sugino K, Ishibashi T and Hirai A 1992 Genetic and physical maps and a clone bank of mitochondrial DNA from rice;Theor. Appl. Genet. 84 275–279

    Article  CAS  Google Scholar 

  • Kadowaki K, Suzuki T, Kazama S, Oh-fuchi T and Sakamoto W 1989 Nucleotide sequence of the cytochrome oxidase sub-unit I gene from rice mitochondria;Nucleic Acids Res. 17 7519

    Article  CAS  Google Scholar 

  • Kaleikau E K, Andre C P, Doshi B and Walbot V 1990a Sequence of the rice mitochondrial gene for apocytochrome b;Nucleic Acids Res. 18 372

    Article  CAS  Google Scholar 

  • Kaleikau E K, Andre C P and Walbot V 1990b Sequence of the FO-ATPase proteolipid (atp 9) gene from rice mitochondria;Nucleic Acids Res. 18 370

    Article  CAS  Google Scholar 

  • Kaleikau E K, Andre C P and Walbot V 1992 Structure and expression of the rice mitochondrial apocytochrome b gene (cob 1) and pseudogene (cob 2);Curr. Genet. 22 463–470

    Article  CAS  Google Scholar 

  • Kao T, Moon E and Wu R 1984 Cytochrome oxidase subunit II gene of rice has an insertion sequence within the intron;Nucleic Acids Res. 12 7305–7315

    Article  CAS  Google Scholar 

  • Levings III C S and Brown G G 1989 Molecular biology of plant mitochondria;Cell 56 171–179

    Article  CAS  Google Scholar 

  • Levy A A, Andre C P and Walbot V 1991 Analysis of a 120-kilobase mitochondrial chromosome in maize;Genetics 128 417–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu A W, Narayanan K K, Andre C P, Kaleikau E K and Walbot V 1992 Co-transcription of orf 25 and cox 3 in rice mitochondria;Curr. Genet. 21 507–513

    Article  CAS  Google Scholar 

  • Lonsdale D M 1984 A review of the structure and organization of the mitochondrial genome of higher plants;Plant Mol. Biol. 3 201–206

    Article  CAS  Google Scholar 

  • Lonsdale D M 1989 The plant mitochondrial genome; inBiochemistry of plants: A comprehensive treatise (eds) P K Stump and E E Lonn (New York: Academic Press) vol. 15, pp 229–295

    Google Scholar 

  • Lonsdale D M, Hodge T P and Fauron C M-R 1984 The physical map and organization of the mitochondrial genome from the fertile cytoplasm of maize;Nucleic Acids Res. 12 9249–9261

    Article  CAS  Google Scholar 

  • Mulligan R M, Maloney A P and Walbot V 1988 RNA processing and multiple transcription initiation sites results in transcript heterogeneity in maize mitochondria;Mol.Gen. Genet. 211 373–380

    Article  CAS  Google Scholar 

  • Narayanan K K, Andre C P, Yang J and Walbot V 1993 Organization of a 117-kb circular mitochondrial chromosome in IR 36 rice;Curr. Genet. 23 248–254

    Article  CAS  Google Scholar 

  • Newton K J 1988 Plant mitochondrial genome: Organization, expression and variation;Annu. Rev. Plant Physiol. Plant Mol. Biol. 39 503–532

    Article  CAS  Google Scholar 

  • Palmer J D 1988 Intraspecific variation and multicircularity inBrassica mitochondrial DNAs;Genetics 118 341–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer J D and Shields C R 1984 Tripartite structure of theBrassica compestris mitochondrial genome;Nature (London) 307 437–440

    Article  CAS  Google Scholar 

  • Quetier F, Lejeune B, Delorme S and Falconet D 1985 The molecular organization and expression of the mitochondrial genome of higer plants; inEncyclopedia of plant physiology (eds) R Douce and D A Day (Berlin: Springer Verlag) vol. 18, pp 25–36

    Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989Molecular cloning: a laboratory manual 2nd edition (New York: Cold Spring Harbor Laboratory)

    Google Scholar 

  • Schwartz D A and Cantor C R 1984 Separation of yeast chromosome-sized DNAs by pulsed-field gradient gel electrophoresis;Cell 37 67–75

    Article  CAS  Google Scholar 

  • Small I D, Isaac P G and Leaver C J 1987 Stoichiometric differences in DNA molecules containing the atp A gene suggest mechanisms for the generation of mitochondrial genome diversity in maize;EMBO J. 6 865–869

    Article  CAS  Google Scholar 

  • Wang B, Cheng W, Li Y-N and Li D-D 1989 Some physicochemical properties of rice mitochondrial DNA;Theor. Appl. Genet. 77 581–586

    Article  CAS  Google Scholar 

  • Yamato K, Ogura Y, Kanegal T, Yamada Y and Ohyama K 1992 Mitochondrial genome structure of rice suspension culture from cytoplasmic male-sterile line (A-58 CMS): Reappraisal of the master circle;Theor. Appl. Genet. 83 279–288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senthilkumar, P., Narayanan, K.K. Analysis of rice mitochondrial genome organization using pulsed-field gel electrophoresis. J. Biosci. 24, 215–222 (1999). https://doi.org/10.1007/BF02941203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941203

Keywords

Navigation