Skip to main content
Log in

Immobilization of cyclodextrin glucanotransferase on amberlite IRA-900 for biosynthesis of transglycosylated xylitol

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cyclodextrin glucanotransferase (CGTase) fromThermoanaerobacter sp. was adsorbed on the ion exchange resin Amberlite IRA-900. The optimum conditions for the immobilization of the CGTase were pH 6.0 and 600 U CGTase/g resin, and the maximum yield of immobilization was around 63% on the basis of the amount ratio of the adsorbed enzyme to the initial amount in the solution. Immobilization of CGTase shifted the optimum temperature for the enzyme to produce transglycosylated xylitol from 70°C to 90°C and improved the thermal stability of immobilized CGTase, especially after the addition of soluble starch and calcium ions. Transglycosylated xylitol was continuously produced using immobilized CGTase in the column type packed bed reactor, and the operating conditions for maximum yield were 10% (w/v) dextrin (13 of the dextrose equivalent) as the glycosyl donor, 10% (w/v) xylitol as the glycosyl acceptor, 20 mL/h of medium flow rate, and 60°C. The maximum yield of transglycosylated xylitol and productivity were 25% and 7.82 g·L−1·h−1, respectively. The half-life of the immobilized CGTase in a column type packed bed reactor was longer than 30 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bar, A. (1986)Xylitol. pp. 185–216. In: L. O. Nabors and R. C. Gelardi (ed).Alternative Sweetners. Marcel Dekker Inc., New York, USA.

    Google Scholar 

  2. Kontiokari, T., M. Uhari, and M. Koskela (1995) Effect of xylitol on growth of nasopharyngeal bacteriain vitro.Antimicrob. Agents. Chemother. 39: 1820–1823.

    CAS  Google Scholar 

  3. Okada, S. (1987) Studies on cyclomaltodextrin glucanotransferase and coupling sugar.J. Jpn. Soc. Starch Sci. 34: 75–82.

    CAS  Google Scholar 

  4. Kitahata, S. and S. Okada (1976) Studies on cyclodextrin glycosyltransferase IV. Enzymatic synthesis of 3-O-α-D-glucopyranosyl-L-sorbose and 4-O-α-D-glucopyranosyl-D-xylose using cyclodextrin glycosyltransferase.J. Biochem. 79: 641–648.

    CAS  Google Scholar 

  5. Aga, H., M. Yoneyama, S. Sakai, and I. Yamamoto (1991) Synthesis of 2-O-α-D-glucopyranosyl L-ascorbic acid by cyclomaltodextrin glucanotransferase fromBacillus stearothermophilus.Agric. Biol. Chem. 55: 1751–1756.

    CAS  Google Scholar 

  6. Kometani, T., Y. Terada, T. Nishimura, H. Takii, and S. Okada (1994) Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilicBacillus: species and in alkaline pH and properties of hesperidin glycosides.Biosci. Biotech. Biochem. 58: 1990–1994.

    Article  CAS  Google Scholar 

  7. Okada, S., S. Kitahata, M. Shiosaka, H. Bunya, M. Kubota, S. Sakai, and Y. Sujisaka (1991) Application of cyclodextrin glucanotransferase.Denpun Kagaku 38: 211–215.

    CAS  Google Scholar 

  8. Sato, M., T. Matsuo, N. Orita, and Y. Yagi (1991) Synthesis of novel sugars, oligoglucosyl-inositol, and their growth stimulating effect forBiffidobacterium.Biotechnol. Lett. 13: 69–74.

    Article  CAS  Google Scholar 

  9. Sato, M., K. Nakamra, H. Nagano, Y. Yagi, and K. Koizumi (1992) Synthesis of glucosyl-inositol using a CGTase, isolation and characterization of positional isomers, and assimilation profiles for intestinal bacteria.Biotechnol. Lett. 14: 659–664.

    Article  CAS  Google Scholar 

  10. Kim, T. K., D. C. Park, and Y. H. Lee (1997) Synthesis of glucosyl-sugar alcohols using cyclodextrin glucosyltransferase and structural identification of glucosyl-maltitol.J. Microbiol. Biotechnol. 7: 310–317.

    CAS  Google Scholar 

  11. Kim, T. K., D. C. Park, and Y. H. Lee (1998) Synthesis of transglycosylated xylitol using, cyclodextrin glucanotransferase and its stimulating effect on growth ofBiffidobacterium.Kor. J. Appl. Microbiol. Biotechnol. 26: 442–449.

    CAS  Google Scholar 

  12. Nakamura, N. and K. Horikoshi (1977) Production of schardinger β-dextrin by soluble and immobilized cyclodextrin glycosyltransferase of an alkalophilicBacillus sp.Biotechnol. Bioeng. 19: 87–99.

    Article  CAS  Google Scholar 

  13. Kato, T. and K. Horikoshi (1984) Immobilized cyclodextrin glucanotransferase of an alkalophilicBacillus sp. No. 38-2.Biotechnol. Bioeng. 26: 595–598.

    Article  CAS  Google Scholar 

  14. Hitoshi, H., K. Hara, N. Kuwahara, S. Sakai, and N. Yamamoto (1986) The continuous reaction of cyclodextrin formation by the column method using the immobilized enzyme on ion exchange resins.J. Jpn., Soc. Starch Sci. 33: 29–33.

    Google Scholar 

  15. Okada, T., M. Ito, and K. Hibino (1994) Immobilization of cyclodextrin glucanotransferase on capillary membrane.Ferment. Bioeng. 77: 259–263.

    Article  CAS  Google Scholar 

  16. Lee, Y. H., S. H. Lee, and H. D. Shin (1991) Evaluation of immobilization methods for cyclodextrin glucanotransferase and characterization of its enzymatic properties.J. Microbiol. Biotechnol. 1: 54–62.

    CAS  Google Scholar 

  17. Lee, Y. H., S. H. Lee, and H. D. Shin (1991) Performance of column type bioreactor packed with immobilized cyclodextrin glucanotransferase for cyclodextrin production.J. Microbiol. Biotechnol. 1: 63–69.

    Google Scholar 

  18. In, M. J., D. C. Kim, H. J. Chae, K. S. Choi, and M. H. Kim (1997) Immobilization of cyclodextrin glucanotransferase and its reaction characteristics regarding transglycosylated stevioside production.Kor. J. Appl. Microbiol. Biotechnol. 25: 305–310.

    CAS  Google Scholar 

  19. Akimaru, K., T. Yagi, and S. Yamamoto (1991) Purification and properties ofBacillus coagulans cyclodextrin glucanotransferase.J. Ferment. Bioeng. 71: 322–328.

    Article  CAS  Google Scholar 

  20. Kitahata, S. and S. Okada (1974) Action of cyclodextrin glucanotransferase fromBacillus megatrium strain No. 5 on starch.Agri. Biol. Chem. 38: 2413–2417.

    CAS  Google Scholar 

  21. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  22. Norman, B. E. and S. T. Jorgensen (1992)Thermoanaerobacter sp. CGTase: its properties and application,Deupun Kagaku 39: 99–106.

    Google Scholar 

  23. Knegtel, R. M. A., R. D. Wind, H. J. Rozeroom, K. H. Kalk, R. M. Buitelaar, L. Dijkhuizen, and B. W. Dijkstra (1996) Crystal structure at 2.3Å resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase fromThermoanaerobacterium thermosulfurigenes EM1.J. Mol. Biol. 256: 611–622.

    Article  CAS  Google Scholar 

  24. Wind, R. D., W. Liebl, R. M. Buitelaar, D. Penniga, A. Spreinat, L. Dijkhuizen, and H. Bahl (1995) Cyclodextrin formation by thermostable α-amylase ofThermoanaerobacterium thermosulfurigenes EM1 and reclassify-cation of the enzyme as a cyclodextrin glucosyltrans-ferase.Appl. Environ. Microbiol. 61: 1257–1265.

    CAS  Google Scholar 

  25. Kobayashi, S., N. Watanabe, K. Nakashima, M. Shiota, and T. Yatake (1995) Action of cyclodextrin producing enzyme (CGTase) and diglucosyl-cyclodextrin.J. Appl. Glycosci. 42: 203–210.

    CAS  Google Scholar 

  26. Mattsson, P., T. Korpela, S. Paavilainen, and M. Mäkelä (1991) Enhanced conversion of starch to cyclodextrin in ethanolic solutions byBacillus circulans varalkalophilus cyclomaltodextrin glucanotransferase.Appl. Biochem. Biotechnol. 30: 17–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, PS., Shin, HD., Park, JK. et al. Immobilization of cyclodextrin glucanotransferase on amberlite IRA-900 for biosynthesis of transglycosylated xylitol. Biotechnol. Bioprocess Eng. 5, 174–180 (2000). https://doi.org/10.1007/BF02936590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936590

Keywords

Navigation