Skip to main content
Log in

Enhanced conversion of starch to cyclodextrins in ethanolic solutions by bacillus circulans var alkalophilus cyclomaltodextrin glucanotransferase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Improved formation of cyclodextrins (CDs) from starch in ethanolic solutions byBacillus circulans var alkalophilus cyclomaltodextrin glucanotransferase was studied. The β- and γ-CD yields increased and α-CD yield gradually decreased as the ethanol concentration was raised. The ethanol concentration required for maximal CD yield depended essentially on starch concentration. The ethanol's effect was pronounced at high starch concentrations. For example, with 30% (w/v) starch, the CD yield was 2.4-fold (146.5 g/L) in the presence of 15% (v/v) ethanol. The effect of dimethylsulfoxide on the formation of CDs was similar to that of ethanol. The disintegration of β- and γ-CDs were narrowly interdependent on the formation of a α-CD and malto-sugars. The amount of reducing sugars decreased from a dextrose equivalent value of roughly 7.5 to 4.5 in the presence of ethanol at starch concentrations 1-30% (w/v). The effect of ethanol on starchy materials from various sources was similar. It was concluded that ethanol retards the decomposition of β-CD by a general mechanism involving a decreased activity of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szejtli, J. (1988),Cyclodextrin technology, Kluwer, Dordrecht, pp. 14 and 28–30.

    Google Scholar 

  2. Armbruster, F. C. and Kooi, E. R. (1969), US Patent 3,425, 910.

  3. Vakaliu, H., Miskolczi-Török, M., Szejtli, J., Járai, M., and Seres, G. (1979), Hung. Patent16, 098.

    Google Scholar 

  4. Okada, S. and Tsujama, M. (1973), US Patent 3, 812, 011.

  5. Sato, M. and Nakamura N. (1974), Japan Patent 7,492,288.

  6. Yagi, Y., Kouno, K. and Inui, T. (1980), Eur. Patent (Appl.)17, 242.

    Google Scholar 

  7. Flaschel, E., Landert, J.-P., and Renken, A. (1982),Proceedings of the First International Symposium on Cydodextrins. Szejtli, J., ed., Akademiai Kiado, Budapest, pp. 41–49.

    Google Scholar 

  8. Ammeraal, R. N. (1988), US Patent 4,738,923.

  9. Gelb, R. I., Schwartz, L. M., Radeos, M., Edmonds, R. B., and Laufer, D. A. (1982),J. Am. Chem. Soc. 104, 6283–6288.

    Article  CAS  Google Scholar 

  10. Matsui, Y. and Mochida, K. (1979),Bull. Chem. Soc. Japan 52, 2808–2814.

    Article  CAS  Google Scholar 

  11. Taraszewska, J. (1989),Rev. Roum. Chim. 34, 1419–1423.

    CAS  Google Scholar 

  12. Wojcik, J. F. and Rohrbach, R. P. (1975),J. Phys. Chem. 79, 2251–2253.

    Article  CAS  Google Scholar 

  13. Rohrbach, R. P., Rodriquez, L. J., Eyring, E. M, and Wojcik, J. F. (1977),J. Phys. Chem. 81, 944–948.

    Article  CAS  Google Scholar 

  14. Gelb, R. I., Schwartz, L. M., Radeos, M., and Laufer, D. A. (1983),J. Phys. Chem. 87, 3349–3354.

    Article  CAS  Google Scholar 

  15. Nakamura, T. and Kawabata S. (1979), Japan Patent (Appl.)79-65, 328.

    Google Scholar 

  16. Rohrbach, R. and Scherl, D. (1988), US Patent 4,748,237.

  17. Shiraishi, F., Kawakami, K., Marushima, H., and Kusunoki, K. (1989),Starch/Stärke 41, 151–155.

    Article  CAS  Google Scholar 

  18. Yang, C.-P. and Su, C.-S. (1989),J. Chem. Tech. Biotechnol. 46, 283–294.

    CAS  Google Scholar 

  19. Nakamura, N. and Horikoshi, K. (1976),Agric. Biol. Chem. 40, 753–757.

    CAS  Google Scholar 

  20. László, E., Bánky, B., Seres, G., and Szejtli, J. (1981),Starch/Stärke 33, 281- 283.

    Article  Google Scholar 

  21. Makela, M. and Korpela, T. (1988),J. Biochem. Biophys. Methods 15, 307–318.

    Article  CAS  Google Scholar 

  22. Lowry, E., Rosebrough, N., Farr, A., and Randall, R. (1951),J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  23. Zsadon, B., Otta, K. H., Tüdös, F. and Szejtli, J. (1979),J. Chrotnatogr. 172, 490–492.

    Article  CAS  Google Scholar 

  24. Hokse, H. (1980),J. Chrotnatogr. 189, 98–100.

    Article  CAS  Google Scholar 

  25. Sumner, J. B. and Somers, G. F. (1949),Laboratory Experiments in Biological Chemistry, Academic Press, New York, pp. 38–39.

    Google Scholar 

  26. Morris, D. L. (1948),Science(Washington, DC)107, 254.

    Article  CAS  Google Scholar 

  27. Sargeant, J. G. (1982),Starch/Stärke 34, 89–92.

    Article  CAS  Google Scholar 

  28. Kobayashi, S. (1975),J. Jpn. Soc. Starch Sci. 22, 126–132.

    Google Scholar 

  29. Makela, M., Mattsson, P., Schinina, M. E., and Korpela, T. (1988),Biotechnol. Appl. Biochem. 10, 414–427.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattssoin, P., Korpela, T., Paavilainen, S. et al. Enhanced conversion of starch to cyclodextrins in ethanolic solutions by bacillus circulans var alkalophilus cyclomaltodextrin glucanotransferase. Appl Biochem Biotechnol 30, 17–28 (1991). https://doi.org/10.1007/BF02922021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922021

Index Entries

Navigation