Skip to main content

Abstract

It has been established long time ago that among many changes in cellular activity the most remarkable event in stressed cells of all know organisms is massive production of highly conserved set of heat shock proteins (Schlesinger et al. 1982a, b). Soon after their discovery heat shock proteins (Hsps) have been implicated in thermotolerance based on the ability to recover heat-induced denatured proteins to their native state (Maloyan et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Konishi T, Hirano T, Kasai H, Shimizu K et al (1995) Possible correlation between DNA damage induced by hydrogen peroxide and translocation of heat shock 70 protein into the nucleus. Biochem Biophys Res Commun 206:548–555

    PubMed  CAS  Google Scholar 

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6:1153–1164

    PubMed  CAS  Google Scholar 

  • Ahn JH, Ko YG, Park WY, Kang YS, Chung HY, Seo JS (1999) Suppression of ceramide-mediated apoptosis by HSP70. Mol Cells 9:200–206

    PubMed  CAS  Google Scholar 

  • Anckar J, Sistonen L (2007) Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 594:78–88

    PubMed  Google Scholar 

  • Angelidis CE, Lazaridis I, Pagoulatos GN (1991) Constitutive expression of heat-shock protein 70 in mammalian cells confers thermoresistance. Eur J Biochem 199:35–39

    PubMed  CAS  Google Scholar 

  • Arrigo AP (1998) Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem. 379:19–26

    Google Scholar 

  • Asea AAA (2007) Release of heat shock proteins: passive versus active release mechanisms. In: Heat shock proteins: potent mediators of inflammation and immunity. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Bercovich B, Stancovski I, Mayer A, Blumenfeld N, Laszlo A et al (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272:9002–9010

    PubMed  CAS  Google Scholar 

  • Binder RJ, Blachere NE, Srivastava PK (2001) Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chem 276:17163–17171

    PubMed  CAS  Google Scholar 

  • Bobkova N, Guzhova I, Margulis B, Nesterova I, Medvinskaya N et al (2013) Dynamics of endogenous Hsp70 synthesis in the brain of olfactory bulbectomized mice. Cell Stress Chaperones 18:109–118

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bobkova NV, Garbuz DG, Nesterova I, Medvinskaya N, Samokhin A et al (2014) Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer’s disease. J Alzheimers Dis 38:425–435

    PubMed  Google Scholar 

  • Brackley KI, Grantham J (2009) Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones 14:23–31

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brar BK, Stephanou A, Wagstaff MJ, Coffin RS, Marber MS et al (1999) Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptotic as well as against thermal or hypoxic stress. J Mol Cell Cardiol 31:135–146

    PubMed  CAS  Google Scholar 

  • Calderwood SK, Ciocca DR (2008) Heat shock proteins: stress proteins with Janus-like properties in cancer. Int J Hyperthermia 24:31–39

    PubMed  CAS  Google Scholar 

  • Carver JA, Guerreiro N, Nicholls KA, Truscott RJ (1995) On the interaction of alpha-crystallin with unfolded proteins. Biochim Biophys Acta 1252:251–260

    PubMed  Google Scholar 

  • Chong KY, Lai CC, Lille S, Chang C, Su CY (1998) Stable overexpression of the constitutive form of heat shock protein 70 confers oxidative protection. J Mol Cell Cardiol 30:599–608

    PubMed  CAS  Google Scholar 

  • Christis C, Lubsen NH, Braakman I (2008) Protein folding includes oligomerization – examples from the endoplasmic reticulum and cytosol. FEBS J 275:4700–4727

    PubMed  CAS  Google Scholar 

  • Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK (1996) Sequential phosphorylation by mitogen-activated kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271:30847–30857

    PubMed  CAS  Google Scholar 

  • Ciechanover A, Stanhill A (2014) The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochim Biophys Acta 1843:86–96

    PubMed  CAS  Google Scholar 

  • Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87:19–48

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen M, Dromard M, Petignat P (2010) Heat shock proteins in ovarian cancer: a potential target for therapy. Gynecol Oncol 119:164–166

    PubMed  CAS  Google Scholar 

  • Cook C, Petrucelli L (2013) Tau triage decisions mediated by the chaperone network. J Alzheimers Dis 33:145–151

    Google Scholar 

  • Cowen LE, Lindquist S (2005) Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309:2185–2189

    PubMed  CAS  Google Scholar 

  • Craig EA, Jacobsen K (1984) Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38:841–849

    PubMed  CAS  Google Scholar 

  • de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin-small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    PubMed  Google Scholar 

  • Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658

    PubMed  CAS  PubMed Central  Google Scholar 

  • Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A et al (2007) Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 14:2839–2847

    PubMed  CAS  Google Scholar 

  • Ditzel L, Lowe J, Stock D, Stetter К, Huber H et al (1998) Crystall structure of the thermosome, the Archaeal chaperonin and homolog of CCT. Cell 93:125–138

    PubMed  CAS  Google Scholar 

  • Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU (2006) Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25:2519–2528

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ekimova IV, Nitsinskaya LE, Romanova IV, Pastukhov YF, Margulis BA, Guzhova IV (2010) Exogenous protein Hsp70/Hsc70 can penetrate into brain structures and attenuate the severity of chemically-induced seizures. J Neurochem 115:1035–1044

    PubMed  CAS  Google Scholar 

  • Fan CY (2003) Mechanisms for regulation of hsp70 function by hsp40. Cell Stress Chaperones 8:309–316

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response, evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    PubMed  CAS  Google Scholar 

  • Feder ME, Cartano NV, Milos L, Krebs RA, Lindquist SL (1996) Effect of engineering hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster. J Exp Biol 199:1837–1844

    PubMed  CAS  Google Scholar 

  • Fernando P, Heikkila JJ (2000) Functional characterization of Xenopus small heat shock protein, Hsp30C: the carboxyl end is required for stability and chaperone activity. Cell Stress Chaperones 5:148–159

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ferreira LR, Norris K, Smith T, Hebert C, Sauk JJ (1996) HSP47 and other ER-resident molecular chaperones form heterocomplexes with each other and with collagen type IV chains. Connect Tissue Res 33:256–273

    Google Scholar 

  • Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421

    PubMed  CAS  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346:623–628

    PubMed  CAS  Google Scholar 

  • Flajnik MF, Canel C, Kramer J, Kasahara M (1991) Which came first, MHC class I or class II? Immunogenetics 33:295–300

    PubMed  CAS  Google Scholar 

  • Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296:2232–2235

    PubMed  CAS  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–649

    PubMed  CAS  Google Scholar 

  • Gabai VL, Meriin AB, Yaglom JA, Volloch V, Sherman MY (1998) Role of HSP70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438:1–4

    PubMed  CAS  Google Scholar 

  • Gangaraju VK, Yin H, Weiner MM, Wang J, Huang XA, Lin H (2011) Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nat Genet 43:153–158

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia-Carbonero R, Carnero A, Paz-Ares L (2013) Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 14:358–369

    Google Scholar 

  • Gebauer M, Zeiner M, Gehring U (1998) Interference between proteins Hap46 and Hop/p60, which bind to different domains of the molecular chaperone hsp70/hsc70. Mol Cell Biol 18:6238–6244

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gong WJ, Golic KG (2006) Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics 172:275–286

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gusev NB, Bogatcheva NV, Marston SB (2002) Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry 67:511–519

    PubMed  CAS  Google Scholar 

  • Harris SF, Shiau AK, Agard DA (2004) The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12(6):1087–1097

    PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    PubMed  CAS  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    PubMed  CAS  Google Scholar 

  • He B, Meng Y, Mivechi NF (1998) Glycogen synthase kinase 3β and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol Cell Biol 18:6624–6633

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197

    PubMed  CAS  Google Scholar 

  • Hightower LE, Guidon PT (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    PubMed  CAS  Google Scholar 

  • Horwitz J (1976) Some properties of the low molecular weight alpha-crystallin from normal human lens: comparison with bovine lens. Exp Eye Res 23:471–481

    PubMed  CAS  Google Scholar 

  • Houry WA (2001) Chaperone-assisted protein folding in the cell cytoplasm. Curr Protein Pept Sci 2:227–244

    PubMed  CAS  Google Scholar 

  • Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A 79:2360–2364

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jaattela M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30–43

    PubMed  CAS  Google Scholar 

  • Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) HSP70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jedlicka P, Mortin MA, Wu C (1997) Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J 16:2452–2462

    PubMed  CAS  PubMed Central  Google Scholar 

  • John NR, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA (1992) The translation machinery and 70kd heat shock protein cooperate in protein synthesis. Cell 71:97–105

    Google Scholar 

  • Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta 1823:607–613

    PubMed  CAS  Google Scholar 

  • Johnson JD, Fleshner M (2006) Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Biol 79:425–434

    PubMed  CAS  Google Scholar 

  • Johnson RN, Kucey BL (1988) Competitive inhibition of hsp70 expression causes thermosensitivity. Science 242:1551–1554

    Google Scholar 

  • Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C (2010) Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun 2:238–247

    PubMed  CAS  Google Scholar 

  • Kammanadiminti SJ, Chadee K (2006) Suppression of NF-kappaB activation by Entamoeba histolytica in intestinal epithelial cells is mediated by heat shock protein 27. J Biol Chem 281:26112–26120

    PubMed  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kamradt MC, Chen F, Cryns VL (2001) The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276:16059–16063

    PubMed  CAS  Google Scholar 

  • Khlebodarova TM (2002) How cells protect themselves against stress? Genetika 38:437–452

    PubMed  CAS  Google Scholar 

  • King V, Tower J (1999) Aging-specific expression of Drosophila hsp22. Dev Biol 207:107–118

    PubMed  CAS  Google Scholar 

  • Knowlton AA, Grenier M, Kirchhoff SR, Salfity M (2000) Phosphorylation at tyrosine-524 influences nuclear accumulation of HSP72 with heat stress. Am J Physiol Heart Circ Physiol 278:2143–2149

    Google Scholar 

  • Komarova EIu, Margulis BA, Guzhova IV (2004a) The role of Hsp70 chaperone in the reaction of human leukemic cells to anticancer drugs. Tsitologiia 46:550–556

    Google Scholar 

  • Komarova EY, Afanasyeva EA, Bulatova MM, Cheetham ME, Margulis BA, Guzhova IV (2004b) Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaperones 9:265–275

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D (1998) The assembly of progesterone receptor-hsp90 complexes using purified proteins. J Biol Chem 273:32973–32979

    PubMed  CAS  Google Scholar 

  • Ku Z, Yang J, Menon V, Thomason DB (1995) Decreased polysomal HSP70 may slow polypeptide elongation during skeletal muscle atrophy. Am J Physiol 268:1369–1374

    Google Scholar 

  • Kumar Y, Tatu U (2003) Stress protein flux during recovery from simulated ischemia: induced heat shock protein 70 confers cytoprotection by suppressing JNK activation and inhibiting apoptotic cell death. Proteomics 3:513–526

    PubMed  CAS  Google Scholar 

  • Lasunskaia EB, Fridlianskaia II, Guzhova IV, Bozhkov VM, Margulis BA (1997) Accumulation of major stress protein 70kDa protects myeloid and lymphoid cells from death by apoptosis. Apoptosis 2:156–163

    PubMed  CAS  Google Scholar 

  • Lee-Yoon D, Easton D, Murawski M, Burd R, Subjeck JR (1995) Identification of a major subfamily of large hsp70-like proteins through the cloning of the mammalian 110-kDa heat shock protein. J Biol Chem 270:15725–15733

    PubMed  CAS  Google Scholar 

  • Li GC, Li L, Liu RY, Rehman M, Lee WM (1992) Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain. Proc Natl Acad Sci U S A 89:2036–2040

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li S, Chien S, Branemark PI (1999) Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res 17:891–899

    PubMed  CAS  Google Scholar 

  • Li F, Mao HP, Ruchalski KL, Wang YH, Choy W et al (2002) Heat stress prevents mitochondrial injury in ATP-depleted renal epithelial cells. Am J Physiol Cell Physiol 283:917–926

    Google Scholar 

  • Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A 88:2874–2878

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lindquist S, Kim G (1996) Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci U S A 93:5301–5306

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maloyan A, Palmon A, Horowitz M (1999) Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress. Am J Physiol 276:R1506–R1515

    PubMed  CAS  Google Scholar 

  • Marcillat O, Zhang Y, Davies KJ (1989) Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochem J 259:181–189

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mayer MP (2010) Gymnastics of molecular chaperones. Mol Cell 39:321–331

    PubMed  CAS  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    PubMed  CAS  Google Scholar 

  • Melnick J, Argon Y (1995) Molecular chaperones and the biosynthesis of antigen receptors. Immunol Today 16:243–250

    PubMed  CAS  Google Scholar 

  • Michaud S, Tanguay RM (2003) Expression of the Hsp23 chaperone during Drosophila embryogenesis: association to distinct neural and glial lineages. BMC Dev Biol 3:9

    PubMed  PubMed Central  Google Scholar 

  • Morrow G, Tanguay RM (2003) Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol 14:291–299

    PubMed  CAS  Google Scholar 

  • Morrow G, Samson M, Michaud S, Tanguay RM (2004) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 18:598–599

    PubMed  CAS  Google Scholar 

  • Morrow G, Heikkila JJ, Tanguay RM (2006) Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones 11:51–60

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mosser DD, Caron AW, Bourged L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein HSP70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY et al (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159

    PubMed  CAS  PubMed Central  Google Scholar 

  • Murphy ME (2013) The HSP70 family and cancer. Carcinogenesis 34:1181–1188

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nagata Y, Anan T, Yoshida T, Mizukami T, Taya Y et al (1999) The stabilization mechanism of mutant-type p53 by impaired ubiquitination: the loss of wild-type p53 function and the HSP90 association. Oncogene 18:6037–6049

    PubMed  CAS  Google Scholar 

  • Nelson RJ, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA (1992) The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71:97–105

    PubMed  CAS  Google Scholar 

  • Neupert W, Hartl FU, Craig EA, Pfanner N (1990) How do polypeptides cross the mitochondrial membranes? Cell 63:447–450

    PubMed  CAS  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115:2809–2816

    PubMed  CAS  Google Scholar 

  • Park KC, Kim DS, Choi HO, Kim KH, Chung JH et al (2000) Overexpression of HSP70 prevents ultraviolet B-induced apoptosis of a human melanoma cell line. Arch Dermatol Res 292:482–487

    PubMed  CAS  Google Scholar 

  • Patki JM, Pawar SS (2013) HSP90: chaperone-me-not. Pathol Oncol Res 19:631–640

    PubMed  CAS  Google Scholar 

  • Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo AP (2002) Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22:816–834

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pelham HR (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961

    PubMed  CAS  Google Scholar 

  • Pockley AG, Shepherd J, Corton JM (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 27:367–377

    PubMed  CAS  Google Scholar 

  • Pockley AG, De Faire U, Kiessling R, Lemne C, Thulin T, Frostegård J (2002) Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertens 20:1815–1820

    PubMed  CAS  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    PubMed  CAS  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    PubMed  CAS  Google Scholar 

  • Rappa F, Farina F, Zummo G, David S, Campanella C et al (2012) HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res 32:5139–5150

    PubMed  CAS  Google Scholar 

  • Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B (2006) Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 25:2510–2518

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rippmann F, Taylor WR, Rothbard JB, Green NM (1991) A hypothetical model for the peptide binding domain of hsp70 based on the peptide binding domain of HLA. EMBO J 10:1053–1059

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenhagen MC, Sōti C, Schmidt U, Wochnik GM, Hartl FU et al (2003) The heat shock protein 90-targeting drug cisplatin selectively inhibits steroid receptor activation. Mol Endocrinol 17:1991–2001

    PubMed  CAS  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    PubMed  CAS  Google Scholar 

  • Sangster TA, Salathia N, Lee HN, Watanabe E, Schellenberg K et al (2008a) HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:2969–2974

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sangster TA, Salathia N, Undurraga S, Milo R, Schellenberg K et al (2008b) HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci U S A 105:2963–2968

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97:10832–10837

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schett G, Steiner CW, Gröger M, Winkler S, Graninger W et al (1999) Activation of Fas inhibits heat-induced activation of HSF1 and up-regulation of HSP70. FASEB J 13:833–842

    PubMed  CAS  Google Scholar 

  • Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296

    PubMed  CAS  Google Scholar 

  • Schlesinger MJ, Ashburner M, Tissieres A (1982) Heat shock from bacteria to man. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schwartz J, Pinilla-Ibarz J, Yuan RR, Scheinberg DA (2003) Novel targeted and immunotherapeutic strategies in chronic myeloid leukemia. Semin Hematol 40:87–96

    PubMed  CAS  Google Scholar 

  • Shorter J (2011) The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 6:e26319

    PubMed  CAS  PubMed Central  Google Scholar 

  • Specchia V, Piacentini L, Tritto P, Fanti L, D’Alessandro R et al (2010) Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463:662–665

    PubMed  CAS  Google Scholar 

  • Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280:38729–38739

    PubMed  CAS  Google Scholar 

  • Summers DW, Douglas PM, Ramos CH, Cyr DM (2009) Polypeptide transfer from Hsp40 to Hsp70 molecular chaperones. Trends Biochem Sci 34:230–233

    PubMed  CAS  Google Scholar 

  • Szalay MS, Kovács IA, Korcsmáros T, Böde C, Csermely P (2007) Stress-induced rearrangements of cellular networks: consequences for protection and drug design. FEBS Lett 581:3675–3680

    PubMed  CAS  Google Scholar 

  • Takano M, Arai T, Mokuno Y, Nishimura H, Nimura Y, Yoshikai Y (1998) Dibutyryl cyclic adenosine monophosphate protects mice against tumor necrosis factor-alpha-induced hepatocyte apoptosis accompanied by increased heat shock protein 70 expression. Cell Stress Chaperones 3:109–117

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tokuriki N, Tawfik DS (2009) Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668–673

    PubMed  CAS  Google Scholar 

  • Tytell M (2005) Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int J Hyperthermia 21:445–455

    PubMed  CAS  Google Scholar 

  • Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock protein is transferred from glia to axon. Brain Res 363:161–164

    PubMed  CAS  Google Scholar 

  • Tytell M, Robinson MB, Milligan C (2010) Release of heat shock proteins and their effects when in extracellular space in the nervous system. In: Asea AAA, Calderwood SK (eds) Heat shock proteins and the brain: implications for neurodegenerative diseases and neuroprotection. Springer, Dordrecht, pp 257–272

    Google Scholar 

  • Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J et al (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873

    PubMed  CAS  Google Scholar 

  • Vinokurov M, Ostrov V, Yurinskaya M, Garbuz D, Murashev A et al (2012) Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels. Cell Stress Chaperones 17:89–101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vogel JL, Parsell DA, Lindquist S (1995) Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Curr Biol 5:306–317

    PubMed  CAS  Google Scholar 

  • Voos W (2009) Mitochondrial protein homeostasis: the cooperative roles of chaperones and proteases. Res Microbiol 160:718–725

    PubMed  CAS  Google Scholar 

  • Voos W (2013) Chaperone-protease networks in mitochondrial protein homeostasis. Biochim Biophys Acta 1833:388–399

    PubMed  CAS  Google Scholar 

  • Wagstaff MJ, Collaço-Moraes Y, Smith J, de Belleroche JS, Coffin RS, Latchman DS (1999) Protection of neuronal cells from apoptosis by HSP27 delivered with a herpes simplex virus-based vector. J Biol Chem 274:5061–5069

    PubMed  CAS  Google Scholar 

  • Welch WJ, Feramisco JR (1985) Rapid purification of mammalian 70,000-dalton stress proteins: affinity of the proteins for nucleotides. Mol Cell Biol 5:1229–1237

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wheeler JC, Bieschke ET, Tower J (1995) Muscle-specific expression of Drosophila Hsp70 in response to aging and oxidative stress. Proc Natl Acad Sci U S A 92:10408–10412

    PubMed  CAS  PubMed Central  Google Scholar 

  • Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH (1998) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an HSP90-binding agent. Mol Cell Biol 18:1517–1524

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu T, Yuan Y, Wu Y, He H, Zhang G, Tanguay RM (1998) Presence of antibodies to heat stress proteins in workers exposed to benzene and in patients with benzene poisoning. Cell Stress Chaperones 3:161–167

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wyganowski KT, Kaltenbach M, Tokuriki N (2013) GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates. J Mol Biol 425:3403–3414

    PubMed  CAS  Google Scholar 

  • Xu Y, Lindquist S (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A 90:7074–7078

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu X, Sarbeng EB, Vorvis C, Kumar DP, Zhou L, Liu Q (2012) Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity. J Biol Chem 287:5661–5672

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zolkiewski M, Zhang T, Nagy M (2012) Aggregate reactivation mediated by the Hsp100 chaperones. Arch Biochem Biophys 520:1–6

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Evgen’ev, M.B., Garbuz, D.G., Zatsepina, O.G. (2014). Molecular Functions of Heat Shock Proteins. In: Heat Shock Proteins and Whole Body Adaptation to Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9235-6_2

Download citation

Publish with us

Policies and ethics