Skip to main content
Log in

Response of saprotrophic microfungi degrading the fulvic fraction of soil organic matter to different N fertilization intensities, different plant species cover and elevated atmospheric CO2 concentration

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The response of the cenosis composition of soil saprotrophic microfungi able to utilize the fulvic fraction of soil organic matter to increased concentration of atmospheric carbon dioxide, plant species cover quality and different levels of nitrogen fertilization was determined under field conditions in a free-air carbon dioxide enrichment experiment. Twenty-nine species of microfungi were isolated from the tested soil. The effects of CO2 enrichment and plant species cover were not significant. Nitrogen fertilization was identified as the only significant factor inducing changes in the abundance of soil microorganisms. This was reflected in a relatively low value of quantitative Sørensen similarity index on comparing fertilized and unfertilized treatments and in 2-way ANOVA of total CFU counts. Some differences were observed in species diversity between the two variants of all treatments. No association between microfungi and the factors under study was found by using the Monte Carlo Permutation test in redundancy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FACE:

free-air carbon dioxide enrichment

RAPD:

random amplification of polymorphic DNA

RDA:

redundancy analysis

References

  • von Arx J.A.: The Genera of Fungi Sporulating in Pure Culture. J. Cramer, Vaduz 1981.

    Google Scholar 

  • Bisset J.: A revision of the genusTrichoderma. I. SectionLongibrachiatum sect.nov.Can.J.Bot. 62, 924–931 (1984).

    Google Scholar 

  • Bisset J.: A revision of the genusTrichoderma. II. Infrageneric classification.Can.J.Bot. 69, 2357–2372 (1991a).

    Article  Google Scholar 

  • Bisset J.: A revision of the genusTrichoderma. III. SectionPachybasium.Can.J.Bot. 69, 2373–2417 (1991b).

    Article  Google Scholar 

  • Bisset J.: A revision of the genusTrichoderma. IV. Additional notes on sectionLongibrachiatum.Can.J.Bot. 69, 2418–2420 (1991c).

    Article  Google Scholar 

  • Chen Y., Senesi N., Schnitzer M.: Information provided on humic substances by E4/E6 ratios.Soil.Sci.Soc.Am.J. 41, 352–358 (1977).

    CAS  Google Scholar 

  • Conway D.R., Frankland J.C., Saunders V.A., Wilson D.R.: Effects of elevated atmospheric CO2 on fungal competition and decomposition ofFraxinus excelstor litter in laboratory microcosms.Mycol.Res. 104, 187–197 (2000).

    Article  CAS  Google Scholar 

  • Domsch K.H., Gams W., Anderson T.H.:Compendium of Soil Fungi, Vol. 1 and2. Academic Press, London 1980.

    Google Scholar 

  • Ellis M.B.:Dematiaceous Hyphomycetes. Commonwealth Agricultural Bureaux, Kew (UK) 1971.

    Google Scholar 

  • Ellis M.B.:More Dematiaceous Hyphomycetes. Commonwealth Agricultural Bureaux, Kew (UK) 1976.

    Google Scholar 

  • Fakoussa R.M., Hofrichter M.: Microbiology and biotechnology of coal degradation.Appl.Microbiol.Biotechnol. 52, 25–40 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen H.B., Ronn R., Christensen S.: Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw.Glob.Biogeochem.Cycles 7, 313–321 (2001).

    Google Scholar 

  • Gams W., Bissett J.: Morphology and identification ofTrichoderma, pp. 3–34 in C.P. Kubicek, G. Harman (Eds):Trichoderma & Ghocladium, Vol. 1. Basic Biology, Taxonomy and Genetics. Academic Press, London-Bristol 1998.

    Google Scholar 

  • Gramss G., Ziegenhagen D., Sorge S.: Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes.Microb.Ecol. 37, 140–151 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Gryndler M., Hršelova H., Klír J., Kubat J., Votruba J.: Long-term fertilization affects the abundance of saprotrophic microfungi degrading resistant forms of soil organic matter.Folia Microbiol. 48, 76–82 (2003).

    Article  CAS  Google Scholar 

  • Hedges J.I., Eglinton G., Hatcher P.G., Kirchman D.L., Arnosi C., Derenne S., Evershed R.I., Kógel-Knaber I., de Leeuw J.W., Littke R., Michaelis W., Rullkötter J.: The molecularly uncharacterized component of nonliving organic matter in natural environments.Org.Geochem. 31, 945–958 (2000).

    Article  CAS  Google Scholar 

  • Hirschel G., Körner C., Arnon J.A.: Will rising atmospheric CO2 affect leaf litter quality andin situ decomposition rates in native plant communities?Oecologia 110, 387–397 (1997).

    Article  Google Scholar 

  • Hršelová H., Chvátalová I., Vosátka M., Klir J., Gryndler M.: Correlation of abundance of arbuscular mycorrhizal fungi, bacteria and saprotrophic microfungi with soil carbon, nitrogen and phosphorus.Folia Microbiol. 44, 683–687 (1999).

    Article  Google Scholar 

  • Hu S., Chapin F.S., Firestone M.K., Field C.B., Chiariello N.R.: Nitrogen limitation of microbial decomposition in a grassland under elevated CO2.Nature 409, 188–191 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Hungate B.A., Jaeger C.H. III,Gamara G., Chapin F.S. III,Field C.B.: Soil microbiota in two annual grasslands: responses to elevated atmospheric CO2.Oecologia 124, 589–598 (2000).

    Article  Google Scholar 

  • van Kessel C., Horwath W.R., Hartwig U., Harris D., Lüscher A.: Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years.Glob.Biogeochem.Cycles 6, 435–444 (2000).

    Google Scholar 

  • Marilley L., Hartwig U.A., Aragno M.: Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneathLolium perenne andTrifolium repens under field conditions.Microb.Ecol. 38, 39–49 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Dombois D., Ellenberg H.:Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York 1974.

    Google Scholar 

  • Olsen S.R., Dean L.A.: Phosphorus, pp. 1035–1049 in C.A. Black (Ed.):Methods of Soil Analysis, Agronomy Ser. no. 9, Part 2. American Society of Agronomy, Madison 1965.

    Google Scholar 

  • Pažoutová S., Bandyopadhyay R., Frederickson D.E., Mantle P.G.: Relations among sorghum ergot isolates from the Americas, Africa, India, and Australia.Plant Dis. 84, 437–442 (2000a).

    Article  Google Scholar 

  • Pažoutová S., Olšovská J., Linka M., Kolínská R., Flieger M.: Chemoraces and habitat specialization ofClaviceps purpurea populations.Appl.Environ.Microbiol. 66, 5419–5425 (2000b).

    Article  PubMed  Google Scholar 

  • Peech M.: Hydrogen-ion activity, pp. 914–926 in C.A. Black (Ed):Methods of Soil Analysis, Agronomy Ser. no. 9, Part 2. American Society of Agronomy, Madison 1965.

    Google Scholar 

  • van de Peer Y., De Wachter R.: Treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment.Computer Appl.Biosci. 10, 569–570 (1994).

    Google Scholar 

  • Pitt J.I.: The genusPenicillium and its teleomorphic statesEupenicillium andTalaromyces. Academic Press, London 1979.

    Google Scholar 

  • Raich J.W., Potter C.S.: Global patterns of carbon dioxide emissions from soils.Glob.Biogeochem.Cycles 9, 23–36 (1995).

    Article  CAS  Google Scholar 

  • Samson R.A.:Paecilomyces and some allied hyphomycetes.Stud.Mycol. 6, 1–119 (1974).

    Google Scholar 

  • Schlesinger W.H.:An Analysis of Global Change. Biogeochemistry. Academic Press, San Diego 1991.

    Google Scholar 

  • Schnitzer M.: Humic substances: chemistry and reactions, pp. 1–58 in M. Schnitzer, S.V. Khan (Eds):Soil Organic Matter. Elsevier Science, New York 1978.

    Chapter  Google Scholar 

  • Sims J.R., Haby V.A.: Simplified colorimetric determination of soil organic matter.Soil Sci. 112, 137–141 (1971).

    Article  CAS  Google Scholar 

  • Sowerby A., Blum H., Gray T.R.G., Ball A.S.: The decomposition ofLolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass.Soil Biol.Biochem. 32, 1359–1366 (2000).

    Article  CAS  Google Scholar 

  • Vitousek P.M.: Beyond global warming: ecology and global change.Ecology 75, 1861–1876 (1994).

    Article  Google Scholar 

  • Yanagi Y., Tamaki H., Otsuka H., Fujitake N.: Comparison of decolorization by microorganisms of humic acids with different12C NMR properties.Soil Biol.Biochem. 34, 729–731 (2002).

    Article  CAS  Google Scholar 

  • Zak D.R., Pregitzer K.S., Curtis P.S., Holmes W.E.: Atmospheric CO2 and the composition and function of soil microbial communities.Ecol.Appl. 10, 47–59 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Strnadová.

Additional information

The support of this research by grants 526/03/0188, 206/03/H137 of theGrant Agency of the Czech Republic, theInstitutional Research Concept AV0Z5020903 and the foundation “Nadáni Josefa, Marie a Zdeňky Hlávkových” is greatly acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strnadová, V., Hršelová, H., Kolařík, M. et al. Response of saprotrophic microfungi degrading the fulvic fraction of soil organic matter to different N fertilization intensities, different plant species cover and elevated atmospheric CO2 concentration. Folia Microbiol 49, 563–568 (2004). https://doi.org/10.1007/BF02931534

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931534

Keywords

Navigation