Skip to main content
Log in

Physiological and morphological changes in autolyzingAspergillus nidulans cultures

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Physiological and morphological changes in carbon-limited autolyzing cultures ofAspergillus nidulans were described. The carbon starvation arrested conidiation while the formation of filamentous and “yeast-like” hyphal fragments with profoundly altered metabolism enabled the fungus to survive the nutritional stress. The morphological and physiological stress responses, which maintained the cellular integrity of surviving hyphal fragments at the expense of autolyzing cells, were highly concerted and regulated. Moreover, sublethal concentrations of the protein synthesis inhibitor cycloheximide or the mitochondrial uncoupler 2,4-dinitrophenol completely blocked the autolysis. In accordance with the propositions of the free-radical theory of ageing reactive oxygen species accumulated in the surviving fragments with a concomitant increase in the specific superoxide dismutase activity and a continuous decrease in cell viability. Glutathione was degraded extensively in carbon-starving cells due to the action of γ-glutamyltranspeptidase, which resulted in a glutathione-glutathione disulfide redox imbalance during autolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

DCF:

2′,7′-dichlorofluorescein

DCM:

dry cell mass

G6PD:

glucose-6-phosphate dehydrogenase

GPx:

glutathione peroxidase

GR:

glutathione reductase

GSH:

glutathione

GSSG:

glutathione disulfide

GST:

glutathione transferase

γGT:

γ-glutamyltransferase

ICD:

isocitrate dehydrogenase (NADP+)

MTT:

3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyl-2H-tetrazolium bromide

ROS:

reactive oxygen species

SOD:

superoxide dismutase

CuZn-SOD:

Cu,Zn-superoxide dismutase

Mn-SOD:

Mn-superoxide dismutase

References

  • Anderson M.E.: Determination of glutathione and glutathione disulfide in biological samples.Meth.Enzymol. 113, 548–555 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Ashok B.T., Ali R.: The aging paradox: free radical theory of aging.Exp.Gerontol. 34, 293–303 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Bahr J.T., Bonner W.D. Jr.: Cyanide-insensitive respiration. I. The steady states of skunk cabbage spadix and bean hypocotyl mitochondria.J.Biol.Chem. 248, 3441–3445 (1973).

    PubMed  CAS  Google Scholar 

  • Barratt R.W., Johnson G.B., Ogata W.N.: Wild-type and mutant stocks ofAspergillus nidulans.Genetics 52, 233–246 (1965).

    PubMed  CAS  Google Scholar 

  • Bruinenberg P.M., van Dijken J.P., Scheffers W.A.: An enzymic analysis of NADPH production and consumption inCandida utilis.J.Gen.Microbiol. 129, 965–971 (1983).

    PubMed  CAS  Google Scholar 

  • Cheng J., Park T.S., Chio L.C., Fischl A.S., Ye X.S.: Induction of apoptosis by sphingoid long-chain bases inAspergillus nidulans.Mol.Cell.Biol. 23, 163–177 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Chiu D.T.Y., Stults F.H., Tappel A.L.: Purification and properties of rat lung soluble glutathione peroxidase.Biochim.Biophys.Acta 445, 558–566 (1976).

    PubMed  CAS  Google Scholar 

  • Costa V., Moradas-Ferreira P.: Oxidative stress and signal transduction inSaccharomyces cerevisiae: insights into ageing, apoptosis and disease.Mol.Aspects Med. 22, 217–246 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Dunn-Coleman N., Prade R.G.: Toward a global filamentous fungus genome sequencing effort.Nature Biotechnol. 16, 5 (1998).

    Article  CAS  Google Scholar 

  • Emri T., Bartók G., Szentirmai A.: Regulation of specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase inPenicillium chrysogenum.FEMS Microbiol.Lett. 117, 67–70 (1994).

    Article  CAS  Google Scholar 

  • Emri T., Pócsi I., Szentirmai A.: Glutathione metabolism and protection against oxidative stress caused by peroxides inPenicillium chrysogenum.Free Radical Biol.Med. 23, 809–814 (1997).

    Article  CAS  Google Scholar 

  • Emri T., Pócsi I., Szentirmai A.: Analysis of the oxidative stress response ofPenicillium chrysogenum to menadione.Free Radical Res. 30, 125–132 (1999a).

    Article  CAS  Google Scholar 

  • Emri T., Sámi L., Szentirmai A., Pócsi I.: Co-ordination of the nitrate and nitrite assimilation, the glutathione and free radical metabolisms, and the pentose-phosphate pathway inPenicillium chrysogenum.J.Basic Microbiol. 39, 109–115 (1999b).

    Article  CAS  Google Scholar 

  • Harman D.: Free radical involvement in aging.Drug Aging 3, 60–80 (1993).

    Article  CAS  Google Scholar 

  • Harvey L.M., McNeil B., Berry D.R., White S.: Autolysis in batch cultures ofPenicillium chrysogenum at varying agitation rates.Enzyme Microb.Technol. 22, 446–458 (1998).

    Article  CAS  Google Scholar 

  • Islam M.S., Nessa A.: Cell-biology of ageing, III. Malondialdehyde as an index of free radical reactions in the early senescent mutants ofNeurospora crassa and study of the effect of free radical scavengers on malondialdehyde contents.Cell Biol.Internat.Rep. 8, 373–377 (1984).

    Article  CAS  Google Scholar 

  • Jakubowski W., Biliński T., Bartosz G.: Oxidative stress during aging of stationary cultures of the yeastSaccharomyces cerevisiae.Free Radical Biol.Med. 28, 659–664 (2000).

    Article  CAS  Google Scholar 

  • Jüsten P., Paul G.C., Nienow A.W., Thomas C.R.: Dependence ofPenicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity.Biotechnol.Bioeng. 59, 762–775 (1998).

    Article  Google Scholar 

  • Karaffa L., Vaczy K., Sandor E., Biro S., Szentirmai A., Pócsi I.: Cyanide-resistant alternative respiration is strictly correlated to intracellular peroxide levels inAcremonium chrysogenum.Free Radical Res. 34, 405–416 (2001).

    Article  CAS  Google Scholar 

  • Lahoz R., Reyes F., Perez-Leblic M.I.: Lytic enzymes in the autolysis of filamentous fungi.Mycopathologia 60, 45–49 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Leary N.O., Pembroke A., Duggan P.F.: Improving accuracy of glucose oxidase procedure for glucose determinations on discrete analyzers.Clin.Chem. 38, 298–302 (1992).

    PubMed  CAS  Google Scholar 

  • Lee D.G., Shin S.Y., Maeng C.Y., Jin Z.Z., Kim K.L., Hahm K.S.: Isolation and characterisation of a novel antifungal peptide fromAspergillus niger.Biochem.Biophys.Res.Commun. 263, 646–651 (1999).

    Article  CAS  Google Scholar 

  • Leiter E., Emri T., Gyemant G., Nagy I., Pocsi I., Winkelmann G., Pocsi I.: Penicillin V production byPenicillium chrysogenum in the presence of Fe(III) and in low-iron culture medium.Folia Microbiol. 46, 183–186 (2001).

    Article  Google Scholar 

  • Longo V.D., Gralla E.B., Valentine J.S.: Superoxide dismutase activity is essential for stationary phase survival inSaccharomyces cerevisiae.J.Biol.Chem. 271, 12275–12280 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Lorin S., Dufour E., Boulay J., Begel O., Marsy S., Sainsard-Chanet A.: Overexpression of the alternative oxidase restores senescence and fertility in a long-lived respiration-deficient mutant ofPodospora anserina.Mol.Microbiol. 42, 1259–1267 (2001).

    Article  PubMed  CAS  Google Scholar 

  • McIntyre M., Berry D.R., McNeil B.: Response ofPenicillium chrysogenum to oxygen starvation in glucose- and nitrogen-limited chemostat cultures.Enzyme Microb.Technol. 25, 447–454 (1999).

    Article  CAS  Google Scholar 

  • Medvedev Z.A.: An attempt at a rational classification of theories of aging.Biol.Rev. 65, 375–398 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Mehdi K., Penninckx M.J.: An important role for glutathione and γ-glutamyl transpeptidase in the supply of growth requirements during nitrogen starvation of the yeastSaccharomyces cerevisiae.Microbiology 143, 1885–1889 (1997).

    PubMed  CAS  Google Scholar 

  • Mehdi K., Thierie J., Penninckx J.: γ-Glutamyl transpeptidase in the yeastSaccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione.Biochem.J. 359, 631–637 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Nagy M., Emri T., Fekete E., Sandor E., Springael J.Y., Penninckx M.J., Pocsi I.: Glutathione metabolism ofAcremonium chrysogenum in relation to cephalosporin C production: is γ-glutamyltranspeptidase in the center?Folia Microbiol. 48, 149–155 (2003).

    CAS  Google Scholar 

  • Nestelbacher R., Laun P., Vondrakova D., Pichova A., Schüller C., Breitenbach M.: The influence of oxygen toxicity on yeast mother cell specific aging.Exp.Gerontol. 35, 63–70 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Oberley L.W., Spitz D.R.: Assay of superoxide dismutase activity in tumour tissue.Meth.Enzymol. 105, 457–464 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Paul G.C., Kent C.A., Thomas C.R.: Hyphal vacuolation and fragmentation inPenicillium chrysogenum.Biotechnol.Bioeng. 44, 655–660 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Pena-Muralla R., Ayoubi P., Graminha M., Martinez-Rossi N.M., Rossi A., Prade R.A.: Antifungal target selection inAspergillus nidulans. Using bioinformatics to make a difference, pp. 215–230 in K.J. Shaw (Ed.):Pathogen Genomics: Impact on Human Health. Humana Press, Totowa (USA) 2002.

    Chapter  Google Scholar 

  • Penninckx M.J.: A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses.Enzyme Microb.Technol. 26, 737–742 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Penninckx M.J., Elskens M.T.: Metabolism and functions of glutathione in micro-organisms.Adv.Microb.Physiol. 34, 239–301 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Perez-Leblic M.I., Reyes F., Martinez M.J., Lahoz R.: Cell wall degradation in the autolysis of filamentous fungi.Mycopathologia 80, 147–155 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Peterson G.L.: Determination of total protein.Meth.Enzymol. 91, 86–105 (1983).

    Google Scholar 

  • Pinto M.C., Mata A.M., Lopez-Barea J.: Reversible inactivation ofSaccharomyces cerevisiae glutathione reductase under reducing conditions.Arch.Biochem.Biophys. 228, 1–12 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Pócsi I., Pusztahelyi T., Bogati M.S., Szentirmai A.: The formation ofN-acetyl-β-d-hexosaminidase is repressed by glucose inPenicillium chrysogenum.J.Basic Microbiol. 33, 259–267 (1993).

    Article  Google Scholar 

  • Pocsi I., Pusztahelyi T., Sámi L., Emri T.: Autolysis ofPenicillium chrysogenum — a holistic approach.Indian J.Biotechnol. 2, 293–301 (2003).

    Google Scholar 

  • Pusztahelyi T., Pócsi I., Szentirmai A.: Aging ofPenicillium chrysogenum cultures under carbon starvation. II. Protease andN-acetyl-β-d-hexosaminidase production.Biotechnol.Appl.Biochem. 25, 87–93 (1997a).

    CAS  Google Scholar 

  • Pusztahelyi T., Pócsi I., Kozma J., Szentirmai A.: Aging ofPenicillium chrysogenum cultures under carbon starvation. I. Morphological changes and secondary metabolite production.Biotechnol.Appl.Biochem. 25, 81–86 (1997b).

    CAS  Google Scholar 

  • Reyes F., Villanueva P., Alfonso C.: Nucleases in the autolysis of filamentous fungi.FEMS.Microbiol.Lett. 57, 67–72 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Roggenkamp R., Sahm H., Wagner F.: Microbial assimilation of methanol induction and function of catalase inCandida boidinii.FEBS Lett. 41, 283–286 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Sámi L., Pusztahelyi T., Emri T., Varecza Z., Fekete A., Grallert Á., Karányi Z., Kiss L., Pócsi I.: Autolysis and ageing ofPenicillium chrysogenum cultures under carbon starvation: chitinase production and antifungal effect of allosamidin.J.Gen.Appl.Microbiol. 47, 201–211 (2001a).

    Article  PubMed  Google Scholar 

  • Sámi L., Emri T., Pócsi I.: Autolysis and ageing ofPenicillium chrysogenum cultures under carbon starvation: glutathione metabolism and formation of reactive oxygen species.Mycol.Res. 105, 1246–1250 (2001b).

    Article  Google Scholar 

  • Sámi L., Karaffa L., Emri T., Pócsi I.: Autolysis and ageing ofPenicillium chrysogenum under carbon starvation: respiration and glucose oxidase production.Acta Microbiol.Immunol.Hung. 50, 67–76 (2003).

    Article  PubMed  Google Scholar 

  • Sigler K., Chaloupka J., Brozmanová J., Stadler N., Hófer M.: Oxidative stress in microorganisms — I. Microbialvs. higher cells — damage and defenses in relation to cell aging and death.Folia.Microbiol. 44, 587–624 (1999).

    Article  CAS  Google Scholar 

  • Sipiczki M., Takeo K., Yamaguchi M., Yoshida S., Miklós I.: Environmentally controlled dimorphic cycle in a fission yeast.Microbiology 144, 1319–1330 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Skulachev V.P.: The programmed death phenomena, aging, and the Samurai law of biology.Exp.Geront. 36, 995–1024 (2001).

    Article  CAS  Google Scholar 

  • Tomarelli R.M., Charney J., Harding M.L.: The use of azoalbumin as a substrate in the colorimetric determination of peptic and tryptic activity.J.Lab.Clin.Med. 34, 428–433 (1949).

    PubMed  CAS  Google Scholar 

  • Trinci A.P.J., Righelato R.C.: Changes in constituents and ultrastructure of hyphal compartments during autolysis of glucose-starvedPenicillium chrysogenum.J.Gen.Microbiol. 60, 239–249 (1970).

    PubMed  CAS  Google Scholar 

  • Yip J.Y., Vanlerberghe G.C.: Mitochondrial alternative oxidase acts to dampen the generation of active oxygen species during a period of rapid respiration induced to support a high rate of putrient uptake.Physiol.Plant. 112, 327–333 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Warholm M., Guthenberg C., von Bahr C., Mannervik B.: Glutathione transferases from human liver.Meth.Enzymol. 113, 499–504 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Wawryn J., Krzepilko A., Myszka A., Bilinski T.: Deficiency in superoxide dismutases shortens life span of yeast cells.Acta Biochim.Polon. 46, 249–253 (1999).

    PubMed  CAS  Google Scholar 

  • White S., McIntyre M., Berry D.R., McNeil B.: The autolysis of industrial filamentous fungi.Crit.Rev.Biotechnol. 22, 1–14 (2002).

    Article  PubMed  Google Scholar 

  • Wickens A.P.: Ageing and the free radical theory.Respir.Physiol. 128, 379–391 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Herman B.: Ageing and apoptosis.Mech.Ageing Dev. 123, 245–260 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Emri.

Additional information

TheHungarian Ministry of Education awarded aSzéchenyi Scholarship for Professors to the last author. The third author was a recipient of aHungarian Scientific Research Fund postdoctoral fellowship, the first author was a grantee of theBolyai János Scholarship. This project was supported by theOffice for Higher Education Programs (grant no. 0092/2001) and by theHungarian Scientific Research Fund (OTKA: grant no. T0 34315 and T0 37 473).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emri, T., Molnár, Z., Pusztahelyi, T. et al. Physiological and morphological changes in autolyzingAspergillus nidulans cultures. Folia Microbiol 49, 277–284 (2004). https://doi.org/10.1007/BF02931043

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931043

Keywords

Navigation