Skip to main content
Log in

Ginzburg-Landau equation and motion by mean curvature, I: Convergence

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the asymptotic behavior (∈→0) of the Ginzburg-Landau equation:

$$u_l^\varepsilon - \Delta u^\varepsilon + \frac{1}{{\varepsilon ^2 }}f(u^\varepsilon ) = 0.$$

. where the unknownu is a real-valued function of [0. ∞)×Rd, and the given nonlinear functionf(u) = 2u(u 2−1) is the derivative of a potential W(u) = (u 2−l)2/2 with two minima of equal depth. We prove that there are a subsequence ∈n and two disjoint, open subsetsP, N of (0, ∞) ×R d satisfying

$$u^{\varepsilon _n } \to 1_\mathcal{P} - 1_\mathcal{N} , as n \to \infty . $$

uniformly inP andN (here 1 A is the indicator of the setA). Furthermore, the Hausdorff dimension of the interface Γ = complement of (PN) ⊂ (0, ∞)×R d is equal tod and it is a weak solution of the mean curvature flow as defined in [13,92]. If this weak solution is unique, or equivalently if the level-set solution of the mean curvature flow is “thin,” then the convergence is on the whole sequence. We also show thatu ∈n has an expansion of the form

$$u^{\varepsilon _n } (t,x) = q\left( {\frac{{d(t,x) + O(\varepsilon _n )}}{{\varepsilon _n }}} \right).$$

whereq(r) = tanh(r) is the traveling wave associated to the cubic nonlinearityf, O(∈) → 0 as ∈ → 0, andd(t, x) is the signed distance ofx to thet-section of Γ. We prove these results under fairly general assumptions on the initial data,u 0. In particular we donot assume thatu (0.x) = q(d(0,x)/∈), nor that we assume that the initial energy, ε(u (0, .)), is uniformly bounded in ∈. Main tools of our analysis are viscosity solutions of parabolic equations, weak viscosity limit of Barles and Perthame, weak solutions of mean curvature flow and their properties obtained in [13] and Ilmanen’s generalization of Huisken’s monotonicity formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, S., and Cahn, J. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening.Acta Metall. 27, 1084–1095 (1979).

    Google Scholar 

  2. Alikakos, N. D., Bates, P. W., and Chen, X. Convergence of the Cahn-Hilliard equation to the Hele-Shaw model.Arch. Rat. Mech. Anal. 128, 165–205 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  3. Alikakos, N. D., Bates, P. W., and Fusco, G. Slow motion for the Cahn-Hilliard equation in one space dimension.J. Diff. Equations 90, 81–135 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  4. Almgren, F., and Taylor, J. E. Flat flow is motion by crystalline curvature for curves with crystalline energies.J. Differential Geom. 42, 1–22 (1995).

    MathSciNet  MATH  Google Scholar 

  5. Almgren, F., Taylor, J. E., and Wang, L. Curvature driven flows: a variational approach.SIAM J. Cont. and Opt. 31, 387–438 (March 1993). Issue dedicated to W. H. Fleming.

    Article  MathSciNet  MATH  Google Scholar 

  6. Almgren, F., and Wang, L. Mathematical existence of crystal growth with Gibbs-thompson curvature effects. Forthcoming.

  7. Angenent, S. Parabolic equations for curves on surfaces. I. Curves with p-integrable curvature.Ann. Math. 132, 451–483(1990).

    Article  MathSciNet  Google Scholar 

  8. Angenent, S. Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions.Ann. Math. 133, 171–217(1991).

    Article  MathSciNet  Google Scholar 

  9. Barles, G. Remark on a flame propogation model. Rapport INRIA # 464 (1985).

  10. Barles, G., Bronsard, L., and Souganidis, P. E. Front propogation for reaction-diffusion equations of bi-stable type.Ann. I.H.P. Anal. Nonlin. 9, 479–496 (1992).

    MathSciNet  MATH  Google Scholar 

  11. Barles, G., and Georgelin, C. A simple proof of convergence for an approximation scheme for computing motions by mean curvature.SIAM J. Num. Anal. 32, 484–500(1995).

    Article  MathSciNet  MATH  Google Scholar 

  12. Barles, G., and Perthame, B. Discontinuous solutions of deterministic optimal stopping problems.Math. Modelling Numerical Analysis 21, 557–579 (1987).

    MathSciNet  MATH  Google Scholar 

  13. Barles, G., Soner, H. M., and Souganidis, P. E. Front propagation and phase field theory.SIAM. J. Cont. Opt. (March 1993). Issue dedicated to W. H. Fleming.

  14. Bence, J. Merriman, B., and Osher, S. Diffusion generated motion by mean curvature. Preprint (1992).

  15. Blowey, J. F., and Elliot, C. M. Curvature dependent phase boundary motion and parabolic double obstacle problems.IMA 47, 19–60. Springer, New York, 1993.

    Google Scholar 

  16. Bonaventura, L. Motion by curvature in an interacting spin system. Preprint (1992).

  17. Brakke, K.A.The Motion of a Surface by Its Mean Curvature. Princeton University Press, Princeton, NJ, 1978.

    MATH  Google Scholar 

  18. Bronsard, L., and Kohn, R. On the slowness of the phase boundary motion in one space dimension.Comm. Pure Appl. Math. 43, 983–998 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  19. Bronsard, L., and Kohn, R. Motion by mean curvature as the singular limit of Ginzburg-Landau model.Jour. Diff. Equations 90, 211–237 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  20. Bronsard, L., and Reitich, F. On the three-phase boundary motion and the singular limit of a vector-valued Ginzburgh-Landau equation.Arch. Rat. Mech. An. 124, 355–379 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  21. Caginalp, G. Surface tension and supercooling in solidification theory.Lecture Notes in Physics 216, 216–226 (1984).

    Article  Google Scholar 

  22. Caginalp, G. An analysis of a phase field model of a free boundary.Arch. Rat. Mech. An. 92, 205–245 (1986).

    MathSciNet  MATH  Google Scholar 

  23. Caginalp, G. Stefan and Hele Shaw type models as asymptotic limits of the phase-field equations.Physical Review A 39/11, 5887–5896(1989).

    Article  MathSciNet  Google Scholar 

  24. Caginalp, G., and Chen, X. Phase field equations in the singular limit of sharp interface equations. Preprint (1992).

  25. Caginalp, G., and Fife, P. Dynamics of layered interfaces arising from phase boundaries.SIAM J. Appl. Math. 48, 506–518 (1988).

    Article  MathSciNet  Google Scholar 

  26. Caginalp, G., and Socolovsky, E. A. Efficient computation of a sharp interface by spreading via phase field methods.Appl. Math. Let. 2/2, 117–120 (1989).

    Article  MathSciNet  Google Scholar 

  27. Chen, X. Generation and propagation of the interface for reaction-diffusion equations.Jour. Diff. Equations 96, 116–141 (1992).

    Article  MATH  Google Scholar 

  28. Chen, X. Spectrums for the Allen-Cahn, Cahn-Hilliard and phase-field equations for generic interfaces. Preprint (1993).

  29. Chen, X., and Elliot, C. M. Asymptotics for a parabolic double obstacle problem. Preprint (1991).

  30. Chen, Y.-G., Giga, Y., and Goto, S. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations.J. Differential Geometry 33, 749–786 (1991). (Announcement:Proc. Japan Academy Ser. A 67/10, 323–328 (1991).)

    MathSciNet  MATH  Google Scholar 

  31. Chen, Y.-G., Giga, Y., and Goto, S. Analysis toward snow crystal growth.Proc. Func. Analysis and Rel. Topics (S. Koshi, ed.) Sapporo, 1990. To appear.

  32. Crandall, M. G., Evans, L. C., and Lions, P.-L. Some properties of viscosity solutions of Hamilton-Jacobi equations.Trans. AMS 282, 487–502 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  33. Crandall, M. G., Ishii, H., and Lions, P.-L. User’s guide to viscosity solutions of second order partial diffrential equations.Bull. AMS 27/1, 1–67 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  34. Crandall, M. G., and Lions, P.-L. Viscosity solutions of Hamilton-Jacobi equations.Trans. AMS 277, 1–43 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  35. Collins, J. B., and Levine, H. Diffuse interface model of diffusion-limited crystal growth.Phys. Rev. B. 31, 6119–6122 (1985).

    Article  Google Scholar 

  36. Dang, H., Fife, P. C., and Peletier, L. A. Saddle solutions of the bi-stable diffusion equation. Preprint (1992).

  37. DeGiorgi, E. Some conjectures on flow by mean curvature.Proceedings of Capri Workshop (1990).

  38. Evans, L. C. Convergence of an algorithm for mean curvature motion. Preprint (1993).

  39. Evans, L. C., and Spruck, J. Motion of level sets by mean curvature.J. Differential Geometry 33, 635–681 (1991).

    MathSciNet  MATH  Google Scholar 

  40. Evans, L. C., and Spruck, J. Motion of level sets by mean curvature II.Trans. AMS 330, 635–681 (1992).

    Article  Google Scholar 

  41. Evans, L. C., and Spruck, J. Motion of level sets by mean curvature III.J. Geom. Analysis 2, 121–150 (1992).

    MathSciNet  MATH  Google Scholar 

  42. Evans, L. C., and Spruck, J. Motion of level sets by mean curvature IV.J. Geom. Analysis 5, 77–114 (1995).

    MathSciNet  Google Scholar 

  43. Evans, L. C., Soner, H. M., and Souganidis, P. E. Phase transitions and generalized motion by mean curvature.Comm. Pure Appl. Math. 45, 1097–1123 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  44. Fife, P.C. Dynamics of internal layers and diffusive interfaces.CBMS-NSF Regional Conference Series in Applied Math. 53, (1988), SIAM, Philadelphia.

    Google Scholar 

  45. Fife, P. C., and McLeod, B. The appoarch of solutions of nonlinear diffusion equation to travelling front solutions.Arc. Rat. Mech. An. 65, 335–361 (1977).

    MathSciNet  MATH  Google Scholar 

  46. Fix, G. Phase field methods for free boundary problems. InFree Boundary Problems: Theory and Applications (B. Fasano and M. Primicerio, eds.). Pitman, London 1983, pp. 580–589.

    Google Scholar 

  47. Fleming, W. H., and Soner, H. M.Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  48. Fonseca, I., and Tartar, L. The gradient theory of phase transitions for systems with two potential wells.Proc. Royal Soc. Edinburgh Sect. A 111, 89–102 (1989).

    MathSciNet  MATH  Google Scholar 

  49. Fried, E., and Gurtin, M. Continuum theory of thermally induced phase transitions based on an order parameter.Physica D 68, 326–343 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  50. Gärtner, J. Bistable reaction-diffusion equations and excitable media.Math. Nachr. 112, 125–152 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  51. Gage, M., and Hamilton, R. S. The heat equation shrinking convex plane curves.J. Differential Geometry 23, 69–95 (1986).

    MathSciNet  MATH  Google Scholar 

  52. Giga, Y., and Goto, S. Motion of hypersurfaces and geometric equations.J. Math. Soc. Japan 44/1, 99–111 (1992).

    MathSciNet  Google Scholar 

  53. Giga, Y., Goto, S., Ishii, H., and Sato, M. H. Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains.Indiana Math. J. 40/2, 443–470 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  54. Giga, Y., and Sato, M. H. Generalized interface condition with the Neumann boundary condition.Proc. Japan Acad. Ser. A Math 67, 263–266 (1991).

    MathSciNet  MATH  Google Scholar 

  55. Grayson, M. A. The heat equation shrinks embedded plane curves to round points.J. Differential Geometry 26, 285–314 (1987).

    MathSciNet  MATH  Google Scholar 

  56. Grayson, M. A. A short note on the evolution of surfaces via mean curvature.Duke Math. J. 58, 555–558 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  57. Gurtin, M. E. Multiphase thermomechanics with interfacial structure 1. Heat conduction and the capillary balance law.Arch. Rat. Mech. An. 104, 195–221 (1988).

    MathSciNet  MATH  Google Scholar 

  58. Gurtin, M. E. Multiphase thermomechanics with interfacial structure. Towards a nonequilibrium thermomechanics of two phase materials.Arch. Rat. Mech. An. 104, 275–312 (1988).

    Google Scholar 

  59. Gurtin, M. E.Thermodynamics of Evolving Phase Boundaries in the Plane. Oxford University Press, 1993.

  60. Gurtin, M. E., Soner, H. M., and Souganidis, P. E. Anisotropic motion of an interface relaxed by the formation of infinitesimal wrinkles.Journal of Differential Equations 119, 54–108 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  61. Huisken, G. Asymptotic behavior for singularities of the mean curvature flow.J. Differential Geometry 31, 285–299 (1990).

    MathSciNet  MATH  Google Scholar 

  62. Ilmanen, T. Convergence of the Allen-Cahn equation to the Brakke’s motion by mean curvature.J. Differential Geom. 38, 417–461(1993).

    MathSciNet  MATH  Google Scholar 

  63. Ilmanen, T. Elliptic regularization and partial regularity for motion by mean curvature.Mem. AMS 108, (1994).

  64. Ilmanen, T. Generalized motion of sets by mean curvature on a manifold.Univ. Indiana Math. J. 41, 671–705 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  65. Ishii, H. A simple direct proof for uniqueness for solutions of the Hamilton-Jacobi equations of the Eikonial type.Proc. AMS. 100, 247–251 (1987).

    Article  MATH  Google Scholar 

  66. Ishii, H., and Souganidis, P. E. Forthcoming.

  67. Jensen, R. The maximum principle for viscosity solutions of second order fully nonlinear partial differential equations.Arch. Rat. Mech. An. 101, 1–27 (1988).

    Article  MATH  Google Scholar 

  68. Katsoulakis, M., Kossioris, G., and Reitrich, F. Generalized motion by mean curvature with Neumann condition and the Allen-Cahn model for phase transitions. Preprint (1992).

  69. Katsoulakis, M., and Souganidis, P. E. Interacting particle systems and generalized mean curvature evolution. Preprint (1992).

  70. Langer, J. S. Unpublished notes (1978). 475

  71. Lasry, J. M., and Lions, P.-L. A remark on regularization in Hilbert spaces.Israel J. Math. 551, 257–266 (1988).

    MathSciNet  Google Scholar 

  72. Luckhaus, S. Solutions of the two phase Stefan problem with the Gibbs-Thompson law for the melting temperature.European J. Appl. Math. 1, 101–111 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  73. DeMasi, A., Orlandi, E., Presutti, E., and Triolo, L. Motion by curvature by scaling non local evolution equations. Preprint (1993).

  74. Modica, L. Gradient theory of phase transitions and the minimal interface criteria.Arch. Rat. Mech. An. 98, 123–142 (1987).

    MathSciNet  MATH  Google Scholar 

  75. Modica, L., and Mortola, S. Il limite nella Γ-convergenza di una famiglia di funzionali ellittici.Boll. Un. Math. Ital. A14(1977).

  76. deMottoni, P., and Schatzman, M. Geometrical evolution of developed interfaces. Trans. AMS. To appear. (Announcement: Evolution géométric d’interfaces.C.R. Acad. Sci. Sér. I. Math. 309, 453–458 (1989).

    MATH  Google Scholar 

  77. deMottoni, P., and Schatzman, M. Development of surfaces inR d.Proc. Royal Edinburgh Sect. A 116, 207–220 (1990).

    MATH  Google Scholar 

  78. Mullins, W. Two dimensional motion of idealized grain boundaries.J. Applied Physics 27, 900–904 (1956).

    Article  MathSciNet  Google Scholar 

  79. Nochetto, R. H., Paolini, M., and Verdi, C. Optimal interface error estimates for the mean curvature flow.Ann. Scuola Nor. Pisa 21, 193–212 (1994).

    MathSciNet  MATH  Google Scholar 

  80. Ohnuma, M., and Sato, M. Singular degenerate parabolic equations with applications to geometric evolutions. Preprint (1992).

  81. Osher, S., and Sethian, J. Fronts propogating with curvature dependent speed.J. Comp. Phys. 79, 12–49 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  82. Otha, T., Jasnow, D.,and Kawasaki, K. Universal scaling in the motion of a random interface.Physics Review Letters 49, 1223–1226 (1982).

    Article  Google Scholar 

  83. Owen, N., Rubinstein, J., and Sternberg, P. Minimizers and gradient flow for singularly perturbed bi-stable potentials with a Dirichlet condition.Proc. Royal Soc. London, A,429, 505–532 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  84. Pego, R. L. Front migration in the nonlinear Cahn-Hilliard equation.Proc. Roy. Soc. London A 422, 261–278 (1989).

    MathSciNet  MATH  Google Scholar 

  85. Penrose, O., and Fife, P. Theormodynamically consistent models for the kinetics of phase transitions.Physica D 43, 44–62 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  86. Rubinstein, J., Sternberg, P., and Keller, J. B. Fast reaction, slow diffusion and curve shortening.SIAM J. Appl. Math. 49, 116–133 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  87. Rubinstein, J., Sternberg, P., and Keller, J. B. Reaction diffusion processes and evolution to harmonic maps.SIAM J. Appl. Math. 49, 1722–1733 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  88. Rubinstein, J., and Sternberg, P. Nonlocal reaction diffusion equations and nucleation.J. IMA. To appear.

  89. Schatzman, M. On the stability of the saddle solution of Allen-Cahn’s equation. Preprint (1993).

  90. Sethian, J. Curvature and evolution of fronts.Comm. Math. Physics 101, 487–495 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  91. Sethian, J., and Strain, J. Crystal growth and dentritic solidification.Jour. Comp. Physics 2, 231–253 (1992).

    Article  MathSciNet  Google Scholar 

  92. Soner, H. M. Motion of a set by the curvature of its boundary.Jour. Diff. Equations 101/2, 313–372 (1993).

    Article  MathSciNet  Google Scholar 

  93. Soner, H. M. Convergence of the phase-field equations to the Mullins-Sekerka problem with kinetic undercooling.131, 139–197 (1995).

    MathSciNet  MATH  Google Scholar 

  94. Soner, H. M. Ginzburg-Landau equation and motion by mean curvature, II: Development of the initial interface.J. Geom. Anal. 7, 000–000 (1997).

    Google Scholar 

  95. Sternberg, P. The effect of a singular perturbation on nonconvex variational problems.Arch. Rat. Mech. An. 101, 209–260 (1988).

    MathSciNet  MATH  Google Scholar 

  96. Sternberg, P., and Ziemer, W. Generalized motion by curvature with a Dirichlet condition. Preprint (1992).

  97. Sternberg, P., and Ziemer, W. Local minimizers of a three phase partition problem with triple junctions. Preprint (1993).

  98. Stoth, B. A model with sharp interface as limit of phase-field equations in one space dimension.European J. Appl. Math.(1992). To appear.

  99. Stoth, B. The Stefan problem with the Gibbs-Thompson law as singular limit of phase-field equations in the radial case.European J. Appl. Math. (1992). To appear.

  100. Strain, J. A boundary integral approach to unstable solidification.Jour. Comp. Physics 85, 342–389 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  101. Taylor, J. E. Motion of curves by crystalline curvature, including triple junctions and boundary points.Proc. Symp. Pure Math. To appear.

  102. Taylor, J. E. The motion of multiple phase junctions under prescribed phase-boundary velocities. Preprint (1992).

  103. Taylor, J. E., Cahn, J. W., and Handwerker, A. C. Geometric models of crystal growth.Acta Met. 40, 1443–1474 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by David Kinderlehrer

Partially supported by the NSF grant DMS-9200801 and by the Army Research Office through the Center for Nonlinear Analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saner, H.M. Ginzburg-Landau equation and motion by mean curvature, I: Convergence. J Geom Anal 7, 437–475 (1997). https://doi.org/10.1007/BF02921628

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921628

Math Subject Classification

Key Words and Phrases

Navigation