Skip to main content
Log in

Influence of cultivation conditions on the production of cellulolytic enzymes withTrichoderma reesei Rutgers C30 in aqueous two-phase systems

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulolytic enzyme production in aqueous two-phase systems withTrichoderma reesei Rutgers C30 has been investigated. The influ ence of different phase systems, as well as addition of media compo nents and substrate on enzyme production have been studied. Extractive enzyme production in fed-batch cultivations was per formed in a phase system composed of PEG 8000 5%-Dextran T500 7% with 1% Solka-Floc BW 200 as substrate. The cellulolytic enzyme system was intermittently withdrawn with the top phase. Addition of media components every 24 h and cellulose every 72 h gave an aver age enzyme activity in the withdrawn top phase of 2.2 FPU/mL dur ing 170 h cultivation. The corresponding productivity was 18 FPU/lh. The productivity was increased to 24 FPU/l.h when media compo nents and cellulose were added every 72 h. The average enzyme con centration was then 1.6 FPU/mL. The results are discussed in relation to methods for cellulolytic enzyme production involving immobiliza tion and cell recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castanon, M. and Wilke, C. R. (1980),Biotech Bioeng 22, 1037.

    Article  CAS  Google Scholar 

  2. Persson, I., Tjerneld, F., and Hahn-Hagerdal, B. (1989),Proc. Biochem., accepted for publication.

  3. Ryu, D. D. T. and Mandels, M. (1980),Enzyme Microb. Technol 2, 91.

    Article  CAS  Google Scholar 

  4. Montenecourt, B. S. and Eveleigh, D. E. (1979),Adv. Chem. Ser. 181, 289.

    Article  Google Scholar 

  5. Shoemaker, S. P., Raymond, J. C, and Bruner, R. (1981),Basic Life Sci. (Trends in the Biol. Ferment. Fuels Chem.)18, 89.

    CAS  Google Scholar 

  6. Warzywoda, M, Ferre V., and Pourquie, J. (1983),Biotech. Bioeng. 25, 3005.

    Article  CAS  Google Scholar 

  7. Mandels, M. (1975),Biotech. Bioeng. Symp. No 5, 81.

  8. Watson, T. G., Nelligan, I., and Lessing, L. (1984),Biotechnol. Lett. 6, (10), 667.

    Article  CAS  Google Scholar 

  9. Hendy, N. A., Wilke, C. R., and Blanch, H. W. (1984),Enzyme Microb. Technol 6, 73.

    Article  CAS  Google Scholar 

  10. Albertsson, P-A (1986), inPartition of Cell Particles and Macromolecules, Third Edition, Wiley and Sons, Inc., New York.

    Google Scholar 

  11. Kula, M-R., Kroner, K. H., and Hustedt, H. (1982),Adv. Biochem. Eng. 24, 74.

    Google Scholar 

  12. Andersson, E. and Hahn-Hagerdal, B. (1990),Enzyme Microb. Technol. 12, 242.

    Article  CAS  Google Scholar 

  13. Tjerneld, F., Persson, I., Albertsson, P-Å. and Hahn-Hägerdal, B. (1985),Biotech. Bioeng. 27, 1044.

    Article  CAS  Google Scholar 

  14. Persson, I., Tjerneld, F., and Hahn-Hagerdal, B. (1984),Enzyme Microb. Technol. 6, 415.

    Article  CAS  Google Scholar 

  15. Andersson, E., Johansson, A-C, and Hahn-Hagerdal, B. (1985),Enzyme Microb. Technol. 7, 333.

    Article  CAS  Google Scholar 

  16. Persson, I., Tjerneld, F., and Hahn-Hagerdal, B. (1989),Biotechnol. Techniques 3, 265.

    Article  CAS  Google Scholar 

  17. Vogel, H.J. (1964),The American Naturalist XCVII, (903), 435.

    Article  Google Scholar 

  18. Mandels, M., Andreotti, R., and Roche, C. (1976),Biotech. Bioeng. 6, 21.

    CAS  Google Scholar 

  19. Kroner, K. H., Hustedt, H., and Kula M-R. (1982),Biotech. Bioeng. 24, 1015.

    Article  CAS  Google Scholar 

  20. Miller, G. L., Blum, R., Glennon, W. E., and Burton, A. L. (1960),Anal. Biochem. 2, 127.

    Article  Google Scholar 

  21. Tjerneld, F., Persson, I., Albertsson, P-A., and Hahn-Hagerdal, B. (1985),Biotech. Bioeng. 27, 1036.

    Article  CAS  Google Scholar 

  22. Albertsson, P-Å., Cajarville, A., Brooks, D. E., and Tjerneld, F. (1987),Biohim. Biophys. Acta 926, 87.

    CAS  Google Scholar 

  23. Veide, A., Smeds, A. L., and Enfors, S-O. (1983),Biotech. Bioeng. 25, 1789.

    Article  CAS  Google Scholar 

  24. Ramgren, M., Andersson, E., and Hahn-Hågerdal, B. (1988),Appl. Microbiol. Biotechnol. 29, 337.

    Article  CAS  Google Scholar 

  25. Andersson, E. and Hahn-Hagerdal, B. (1988),Appl. Microbiol. Biotechnol. 29, 329.

    Article  CAS  Google Scholar 

  26. Kumakura, M. and Kaetsu, I. (1986),Biotechnol. Appl. Biochem. 8, 195.

    CAS  Google Scholar 

  27. Webb, C, Fukuda, H., and Atkinson, B. (1986),Biotech. Bioeng. 28, 41.

    Article  CAS  Google Scholar 

  28. Frein, E. M., Montenecourt, B. S., and Eveleigh, D. E. (1982),Biotechnol. Lett. 4, (5), 287.

    Article  CAS  Google Scholar 

  29. Ghose, T. K. and Sahai, V. (1979),Biotech. Bioeng. 21, 283.

    Article  CAS  Google Scholar 

  30. Kula, M.-R., Kroner, K., and Hustedt, H. (1982),Adv. Biochem. Eng. 24, 73.

    CAS  Google Scholar 

  31. Tjerneld, F., Johansson, G., and Joelsson, M. (1987),Biotech. Bioeng. 30, 809.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, I., Tjerneld, F. & Hähn-Hagerdal, B. Influence of cultivation conditions on the production of cellulolytic enzymes withTrichoderma reesei Rutgers C30 in aqueous two-phase systems. Appl Biochem Biotechnol 27, 9–25 (1991). https://doi.org/10.1007/BF02921511

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921511

Index Entries

Navigation