Skip to main content
Log in

Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineeredE. coli

  • Session 5 Environmental Biotechnology
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Although lignocellulosic biomass and wastes are targeted as an attractive alternative fermentation feedstock for the production of fuel ethanol, cellulosic ethanol is not yet an industrial reality because of problems in bioconversion technologies relating both to depolymerization and fermentation. In the production of wood pulp by the sulfite process, about 50% of the wood (hemicellulose and lignin) is dissolved to produce cellulose pulp, and the pulp mill effluent (“spent sulfite liquor” SSL) represents the only lignocellulosic hydrolysate available today in large quantities (about 90 billion liters annually worldwide). Although softwoods have been the traditional feedstock for pulping operations, hardwood pulping is becoming more popular, and the pentose sugars in hardwood SSL (principally xylose) are not fermented by the yeasts currently being used in the production of ethanol from softwood SSL.

This study assessed the fermentation performance characteristics of a patented (US Pat. 5,000,000), recombinantEscherichia coli B (ATCC 11303 pLOI297) in anaerobic batch fermentations of both nutrient-supplemented soft and hardwood SSL (30–35 g/L total reducing sugars). The pH was controlled at 7.0 to maximize tolerance to acetic acid. In contrast to the high-performance characteristics exhibited in synthetic media, formulated to mimic the composition of softwood and hardwood SSL (yield approaching theoretical maximum), performance in SSL media was variable with conversion efficiencies in the range of 67–84% for hardwood SSL and 53–76% for softwood SSL. Overlimiting treatment of HSSL, using Ca(OH)2, improved overall volumetric productivity two- to sevenfold to a max of 0.42 g/L/h at an initial cell loading of 0.5 g dry wt/L. A conversion efficiency of 92% (6.1 g/L ethanol) was achieved using diluted Ca(OH)2-treated hardwood SSL. The variable behavior of this particular genetic construct is viewed as a major detractant regarding its candidacy as a biocatalyst for SSL fermentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moorer, R. R., Walter, D. K., and Gronich, S. (1993), inEnergy from Biomass & Wastes XVI, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, (in press).

    Google Scholar 

  2. Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991),Science 251, 1318–1323.

    Article  CAS  Google Scholar 

  3. Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 24/25, 735–753.

    Google Scholar 

  4. Lynd, L. R. (1990),Appl. Biochem. Biotechnol. 24/25, 695–719.

    Google Scholar 

  5. Grethlein, H. E. (1985),Bio/Technology 3, 155–160.

    Article  CAS  Google Scholar 

  6. Kong, F., Engler, C. R., and Soltes, E., (1992),Appl. Biochem. Biotechnol. 34/35, 23–35.

    Google Scholar 

  7. Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. (1984),Biotech. Bioeng. Symp. 14, 139–157.

    Google Scholar 

  8. Grethlein, H. E., Allen, D. C., and Converse, A. O. (1984),Biotech. Bioeng. 26, 1498–1505.

    Article  CAS  Google Scholar 

  9. Freese, E., Sheu, C. W., and Galliers, E. (1973),Nature 241, 321.

    Article  CAS  Google Scholar 

  10. Fein, J. E., Tallim, S. R., and Lawford, G. R. (1984),Can. J. Microbiol. 30, 682–690.

    Article  CAS  Google Scholar 

  11. Frazer, F. R. and McCaskey, T. A. (1989),Biomass 18, 31–42.

    Article  CAS  Google Scholar 

  12. Nishikawa, N. K., Sutcliffe, R., and Saddler, J. N. (1988),Appl. Microbiol. Biotechnol. 27, 549–552.

    CAS  Google Scholar 

  13. Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986),J. Ferment. Technol. 64, 567–570.

    Article  CAS  Google Scholar 

  14. Johnson, M. C. and Harris, M. C. (1948),J. Am. Chem. Soc. 70, 2961–2963.

    Article  CAS  Google Scholar 

  15. Strickland, R. J. and Beck, M. J. (1984),Proc. 6th International Symp. on Alcohol Fuels, Ottawa, Canada, May 21–25, pp. 220–226.

  16. Beck, M. J. (1986),Biotechnol. Bioeng. Symp. 17, 617–627.

    CAS  Google Scholar 

  17. Tran, Ai. V. and Chambers, R. P. (1986),Enzyme Microbiol. Technol. 8, 439–444.

    Article  CAS  Google Scholar 

  18. Wilson, J. J., Deschatelets, L., and Nishikawa, N. K. (1989),Appl. Microbiol. Biotechnol. 31, 592–596.

    Article  CAS  Google Scholar 

  19. Lawford, H. G. and Rousseau, J. D. (1993), inEnergy from Biomass & Wastes XVI, Klass, D. L. ed., Institute of Gas Technology, Chicago, IL, (in press).

    Google Scholar 

  20. Björling, T. and Lindman, B. (1989),Enzyme Microb. Technol. 11, 240–246.

    Article  Google Scholar 

  21. Safi, B. F., Rouleau, D., Mayer, R. C., and Desrochers, M. (1986),Biotechnol. Bioeng. 28, 944–951.

    Article  CAS  Google Scholar 

  22. Mueller, J. C. (1970),Pulp and Paper Magazine Canada 72, 72–76.

    Google Scholar 

  23. Wallin, J. H. (1907), Swedish Patent 26,780.

  24. Wilson, J. J., Nishikawa, N. N., Deschatelets, L., and Nguyen, Q. (1990), Final Report of DSS Contract File #051SZ.23283-8-6103. vol. I and II. Alternative Energy Division; Energy, Mines and Resources Canada, Ottawa.

    Google Scholar 

  25. Slapack, G., Edey, E., Mahmourides, G., and Schneider, H. (1984),Proceedings of Biotechnology in Pulp and Paper Industry, Pulp and Board Div., London, Sept. 12–14, pp. 359–381.

  26. Parekh, S. R., Parekh, R. S., and Wayman, M. (1987),Process Biochemistry 22, 85–91.

    CAS  Google Scholar 

  27. Ingram, L. O., Conway, T., and Alterthum, F. (1991), United States Patent 5,000,000.

  28. Alterthum, F. and Ingram, L. O. (1989),Appl. Environ. Microbiol. 55, 1943–1948.

    CAS  Google Scholar 

  29. Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S. (1990), inDevelopments in Industrial Microbiology, vol. 31, Pierce, G. E., ed., Elsevier Science Publishers, New York, pp. 21–30.

    Google Scholar 

  30. Ohta, K., Alterthum, F., and Ingram, L. O. (1990),Appl. Environ. Microbiol. 56, 463–465.

    CAS  Google Scholar 

  31. Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotechnol. Bioeng. 38, 296–303.

    Article  CAS  Google Scholar 

  32. Lawford, H. G. and Rousseau, J. D. (1991),Appl. Biochem. Biotechnol. 28/29, 221–236.

    Article  Google Scholar 

  33. Lawford, H. G. and Rousseau, J. D. (1991), inEnergy from Biomass & Wastes XV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 583–622.

    Google Scholar 

  34. Lawford, H. G. and Rousseau, J. D. (1991),Biotechnol. Lett. 13, 191–196.

    Article  CAS  Google Scholar 

  35. Lawford, H. G. and Rousseau, J. D. (1992),Appl. Biochem. Biotechnol. 34/35, 185–204.

    Google Scholar 

  36. van Dijken, J. P. and Scheffers, W. A. (1987), United States Patent 4,701,414.

  37. Luria, S. E. and Delbruck, M. (1943),Genetics 28, 491–511.

    CAS  Google Scholar 

  38. Barbosa, M. de F. S., Beck, M. J., Fein, J. E., Potts, D., and Ingram, L. O. (1992),Appl. Environ. Microbiol. 58, 1382–1384.

    CAS  Google Scholar 

  39. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.

    CAS  Google Scholar 

  40. du Preez, J. C., Bosch, M., and Prior, B. A. (1986),Enzyme Microb. Technol. 8, 360–364.

    Article  Google Scholar 

  41. Yu, S., Wayman, M., and Parekh, S. (1987),Biotechnol. Bioeng. 29, 1144–1150.

    Article  CAS  Google Scholar 

  42. van Zyl, C., Prior, B. A., and du Preez, J. C. (1988),Appl. Biochem. Biotechnol. 17, 357–369.

    Article  Google Scholar 

  43. de Preez, J. C., van Driessel, B., and Prior, B. A. (1989),Appl. Microbiol. Biotechnol. 30, 53–58.

    Article  Google Scholar 

  44. Guebel, D. V., Cordenons, A., Nudel, B. C., and Giulietti, A. M. (1991),J. Ind. Microbiol. 7, 287–292.

    Article  CAS  Google Scholar 

  45. Skoog, K. and Hahn-Hägerdal, B. (1990),Appl. Environ. Microbiol. 56, 3389–3394.

    CAS  Google Scholar 

  46. Olsson, L., Linden, T. and Hahn-Hägerdal, B. (1992),Appl. Biochem. Biotechnol. 34/35, 359–368.

    Google Scholar 

  47. Linden, T. and Hahn-Hägerdal, B. (1989),Enzyme Microb. Technol. 11, 583–589.

    Article  CAS  Google Scholar 

  48. Dahlgren, E. H. (1964),J. Water Pollution Control Fed. 36, 1543–1549.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineeredE. coli . Appl Biochem Biotechnol 39, 667–685 (1993). https://doi.org/10.1007/BF02919027

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919027

Index Entries

Navigation