Skip to main content

Advertisement

Log in

Pretreatment and Detoxification of Acid-Treated Wood Hydrolysates for Pyruvate Production by an Engineered Consortium of Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The biorefinery concept makes use of renewable lignocellulosic biomass to produce commodities sustainably. A synthetic microbial consortium can enable the simultaneous utilization of sugars such as glucose and xylose to produce biochemicals, where each consortium member converts one sugar into the target product. In this study, woody biomass was used to generate glucose and xylose after pretreatment with 20% (w/v) sulfuric acid and 60-min reaction time. We compared several strategies for detoxification with charcoal and sodium borohydride treatments to improve the fermentability of this hydrolysate in a defined medium for the production of the growth-associated product pyruvate. In shake flask culture, the highest pyruvate yield on xylose of 0.8 g/g was found using pH 6 charcoal-treated hydrolysate. In bioreactor studies, a consortium of two engineered E. coli strains converted the mixture of glucose and xylose in batch studies to 12.8 ± 2.7 g/L pyruvate in 13 h. These results demonstrate that lignocellulosic biomass as the sole carbon source can be used to produce growth-related products after employing suitable detoxification strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chundawat, S. P. S., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review of Chemical and Biomolecular Engineering, 2(1), 121–145.

    CAS  PubMed  Google Scholar 

  2. Takkellapati, S., Li, T., & Gonzalez, M. A. (2018). An overview of biorefinery derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technology and Environmental Policy, 20(7), 1615–1630.

    CAS  Google Scholar 

  3. Zabed, H., Sahu, J. N., Boyce, A. N., & Faruq, G. (2016). Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews, 66, 751–774.

    CAS  Google Scholar 

  4. Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6, 141.

    Google Scholar 

  5. Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocesses, 4(1), 7.

    Google Scholar 

  6. Sarawan, C., Suinyuy, T. N., Sewsynker-Sukai, Y., & Gueguim Kana, E. B. (2019). Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production. Bioresource Technology, 286, 121403.

    CAS  PubMed  Google Scholar 

  7. Chandel, A. K., Kapoor, R. K., Singh, A., & Kuhad, R. C. (2007). Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98(10), 1947–1950.

    CAS  PubMed  Google Scholar 

  8. Lee, J. M., Venditti, R. A., Jameel, H., & Kenealy, W. R. (2011). Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass and Bioenergy, 35(1), 626–636.

    CAS  Google Scholar 

  9. Parajó, J. C., Domínguez, H., & Domínguez, J. M. (1996). Charcoal adsorption of wood hydrolysates for improving their fermentability: Influence of the operational conditions. Bioresource Technology, 57(2), 179–185.

    Google Scholar 

  10. Mussatto, S. I., Santos, J. C., & Roberto, I. C. (2004). Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. Journal of Chemical Technology and Biotechnology, 79(6), 590–596.

    CAS  Google Scholar 

  11. Mustapa Kamal, S. M. M., Mohamad, N. L., Liew Abdullah, A. G., & Abdullah, N. (2011). Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Procedia Food Science, 1, 908–913.

    Google Scholar 

  12. Hodge, D. B., Andersson, C., Berglund, K. A., & Rova, U. (2009). Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates to succinic acid. Enzyme and Microbial Technology, 44(5), 309–316.

    CAS  Google Scholar 

  13. Wang, C., Zhang, H., Cai, H., Zhou, Z., Chen, Y., Chen, Y., & Ouyang, P. (2014). Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 172(1), 340–350.

    CAS  PubMed  Google Scholar 

  14. Chen, K., Jiang, M., Wei, P., Yao, J., & Wu, H. (2010). Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes. Applied Biochemistry and Biotechnology, 160(2), 477–485.

    CAS  PubMed  Google Scholar 

  15. Cavka, A., & Jönsson, L. J. (2013). Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresource Technology, 136, 368–376.

    CAS  PubMed  Google Scholar 

  16. Alriksson, B., Cavka, A., & Jönsson, L. J. (2011). Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresource Technology, 102(2), 1254–1263.

    CAS  PubMed  Google Scholar 

  17. Guo, X., Cavka, A., Jönsson, L. J., & Hong, F. (2013). Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microbial Cell Factories, 12(1), 93.

    PubMed  PubMed Central  Google Scholar 

  18. Ludwig, D., Amann, M., Hirth, T., Rupp, S., & Zibek, S. (2013). Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates. Bioresource Technology, 133, 455–461.

    CAS  PubMed  Google Scholar 

  19. Keshav, P. K., Shaik, N., Koti, S., & Linga, V. R. (2016). Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Industrial Crops and Products, 91, 323–331.

    CAS  Google Scholar 

  20. Rosales-Calderon, O., & Arantes, V. (2019). A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for Biofuels, 12(1), 240.

    PubMed  PubMed Central  Google Scholar 

  21. Liu, S., Bischoff, K. M., Leathers, T. D., Qureshi, N., Rich, J. O., & Hughes, S. R. (2013). Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213. Bioresource Technology, 143, 322–329.

    CAS  PubMed  Google Scholar 

  22. Fu, H., Yang, S.-T., Wang, M., Wang, J., & Wang, I.-C. (2017). Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. Bioresource Technology, 234, 389–396.

    CAS  PubMed  Google Scholar 

  23. Zhou, P.-P., Meng, J., & Bao, J. (2017). Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification. Bioresource Technology, 224, 563–572.

    CAS  PubMed  Google Scholar 

  24. Zhang, Y., Kumar, A., Hardwidge, P. R., Tanaka, T., Kondo, A., & Vadlani, P. V. (2016). D-Lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum. Biotechnology Progress, 32(2), 271–278.

    CAS  PubMed  Google Scholar 

  25. Han, X., Li, L., Wei, C., Zhang, J., & Bao, J. (2019). Facilitation of L-lactic acid fermentation by lignocellulosic biomass rich in vitamin B compounds. Journal of Agriculture and Food Chemistry, 67(25), 7082–7086.

    CAS  Google Scholar 

  26. Kuo, Y.-C., Yuan, S.-F., Wang, C.-A., Huang, Y.-J., Guo, G.-L., & Hwang, W.-S. (2015). Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene deficient Lactobacillus paracasei strain. Bioresource Technology, 198, 651–657.

    CAS  PubMed  Google Scholar 

  27. Wang, X., Salvachúa, D., Nogué, V. S., Michener, W. E., Bratis, A. D., Dorgan, J. R., & Beckham, G. T. (2017). Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici. Biotechnology for Biofuels, 10(1), 200.

    PubMed  PubMed Central  Google Scholar 

  28. Liu, R., Liang, L., Li, F., Wu, M., Chen, K., Ma, J., Jiang, M., Wei, P., & Ouyang, P. (2013). Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Bioresource Technology, 149, 84–91.

    CAS  PubMed  Google Scholar 

  29. Chen, K.-Q., Li, J., Ma, J.-F., Jiang, M., Wei, P., Liu, Z.-M., & Ying, H.-J. (2011). Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber. Bioresource Technology, 102(2), 1704–1708.

    CAS  PubMed  Google Scholar 

  30. Maleki, N., & Eiteman, M. A. (2017). Recent progress in the microbial production of pyruvic acid. Fermentation, 3(1), 8.

    Google Scholar 

  31. Maleki, N., Safari, M., & Eiteman, M. A. (2018). Conversion of glucose-xylose mixtures to pyruvate using a consortium of metabolically engineered Escherichia coli. Engineering in Life Sciences, 18(1), 40–47.

    CAS  PubMed  Google Scholar 

  32. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. & Crocker, D. (2012). Determination of structural carbohydrates and lignin in biomass: Laboratory analytical procedure (LAP). NREL technical report NREL/TP-510-42618.

  33. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., & Ingram, L. O. (2001). Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology Progress, 17(2), 287–293.

    CAS  PubMed  Google Scholar 

  34. Eiteman, M. A., & Chastain, M. J. (1997). Optimization of the ion-exchange analysis of organic acids from fermentation. Analytica Chimica Acta, 338(1-2), 69–75.

    CAS  Google Scholar 

  35. Solarte-Toro, J. C., Romero-García, J. M., Martínez-Patiňo, J. C., Ruiz-Ramos, E., Castro-Galiano, E., & Cardona-Alzate, C. A. (2019). Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renewable and Sustainable Energy Reviews, 107, 587–601.

    CAS  Google Scholar 

  36. Bhandari, N., Macdonald, D. G., & Bakhshi, N. N. (1984). Kinetic studies of corn-stover saccharification using sulphuric acid. Biotechnology and Bioengineering, 26(4), 320–327.

    CAS  PubMed  Google Scholar 

  37. Um, B.-H., & van Walsum, G. P. (2010). Mass balance on green liquor pre-pulping extraction of northeast mixed hardwood. Bioresource Technology, 101(15), 5978–5987.

    CAS  PubMed  Google Scholar 

  38. Mittal, A., Scott, G. M., Amidon, T. E., Kiemle, D. J., & Stipanovic, A. J. (2009). Quantitative analysis of sugars in wood hydrolyzates with 1H NMR during the autohydrolysis of hardwoods. Bioresource Technology, 100(24), 6398–6406.

    CAS  PubMed  Google Scholar 

  39. Um, B.-H., & van Walsum, G. P. (2009). Acid hydrolysis of hemicellulose in green liquor pre-pulping extract of mixed northern hardwoods. Applied Biochemistry and Biotechnology, 153(1-3), 127–138.

    CAS  PubMed  Google Scholar 

  40. Mussatto, S. I., & Roberto, I. C. (2001). Hydrolysate detoxification with activated charcoal for xylitol production b Candida guilliermondii. Biotechnology Letters, 23(20), 1681–1684.

    CAS  Google Scholar 

  41. Bienkowski, P. R., Ladisch, M. R., Voloch, M., & Tsao, G. T. (1984). Acid hydrolysis of pretreated lignocellulose from corn residue. Biotechnology and Bioengineering Symposium Series, 14, 511–524.

    CAS  Google Scholar 

  42. Li, H., Saeed, A., Sarwar Jahan, M., Ni, Y., & van Heiningen, A. (2010). Hemicellulose removal from hardwood chips in the pre-hydrolysis step of the kraft-based dissolving pulp production process. Journal of Wood Chemistry and Technology, 30(1), 48–60.

    CAS  Google Scholar 

  43. Taherzadeh, M. J., Eklund, R., Gustafsson, L., Niklasson, C., & Lidén, G. (1997). Characterization and fermentation of dilute-acid hydrolyzates from wood. Industrial and Engineering Chemistry Research, 36(11), 4659–4665.

    CAS  Google Scholar 

  44. Deshavath, N. N., Mohan, M., Veeranki, V. D., Goud, V. V., Pinnamaneni, S. R., & Benarjee, T. (2017). Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production. 3 Biotechnology, 7, 139.

    Google Scholar 

  45. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N.-O. (1998). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24, 151–159.

    Google Scholar 

  46. Tomar, A., Eiteman, M. A., & Altman, E. (2003). The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli. Applied Microbiology and Biotechnology, 62(1), 76–82.

    CAS  PubMed  Google Scholar 

  47. Alriksson, B., Sjöde, A., Nilvebrant, N.-O., & Jönsson, L. J. (2006). Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Applied Biochemistry and Biotechnology, 129-132, 599–611.

    CAS  PubMed  Google Scholar 

  48. Seong, H. A., Lee, J. S., Yoon, S. Y., Song, W.-Y., & Shin, S.-J. (2016). Fermentation characteristics of acid hydrolysates by different neutralizing agents. International Journal of Hydrogen Energy, 41(37), 16365–16372.

    CAS  Google Scholar 

  49. Wang, S., & Zhu, Z. H. (2007). Effects of acidic treatment of activated carbons on dye adsorption. Dyes and Pigments, 75(2), 306–314.

    CAS  Google Scholar 

  50. Peinado, S., Mateo, S., Sánchez, S., & Moya, A. J. (2019). Effectiveness of sodium borohydride treatment on acid hydrolyzates from olive-tree pruning biomass for bioethanol production. Bioenergy Research, 12(2), 302–311.

    CAS  Google Scholar 

  51. Ahmad, F., Jameel, A. T., Kamarudin, M. H., & Mel, M. (2011). Study of growth kinetic and modeling of ethanol production by Saccharomyces cerevisiae. African Journal of Biotechnology, 16, 18842–18846.

    Google Scholar 

  52. Eiteman, M. A., Lee, S. A., & Altman, E. (2008). A co-fermentation strategy to consume sugar mixtures effectively. Journal of Biological Engineering, 2(1), 3.

    PubMed  PubMed Central  Google Scholar 

  53. Xia, T., Eiteman, M. A., & Altman, E. (2012). Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microbial Cell Factories, 11(1), 77.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Saini, M., Lin, L.-J., Chiang, C.-J., & Chao, Y.-P. (2017). Synthetic consortium of Escherichia coli for n-butanol production by fermentation of the glucose-xylose mixture. Journal of Agriculture and Food Chemistry, 65(46), 10040–10047.

    CAS  Google Scholar 

  55. Verhoeven, M. D., de Valk, S. C., Daran, J.-M. G., van Maris, A. J. A., & Pronk, J. T. (2018). Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains. FEMS Yeast Research, 18, foy075.

    CAS  Google Scholar 

  56. Causey, T. B., Shanmugam, K. T., Yomano, L. P., & Ingram, L. O. (2003). Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proceedings of the National Academy of Sciences, 8, 2235–2240.

    Google Scholar 

  57. Zhu, Y., Eiteman, M. A., Altman, R., & Altman, E. (2008). High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain. Applied and Environmental Microbiology, 74(21), 6649–6655.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Sarah Lee for technical support and Cosmas Bayuadri at GranBio USA for HCE biomass.

Funding

This research is financially supported by the Southeastern Regional Sun Grant Center at the University of Tennessee through a grant provided by the US Department of Agriculture under award number 2014-38502-22598.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Eiteman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajpurohit, H., Eiteman, M.A. Pretreatment and Detoxification of Acid-Treated Wood Hydrolysates for Pyruvate Production by an Engineered Consortium of Escherichia coli. Appl Biochem Biotechnol 192, 243–256 (2020). https://doi.org/10.1007/s12010-020-03320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03320-y

Keywords

Navigation