Skip to main content

Advertisement

Log in

Deformation Behavior of Metastable Austenitic Steel at Low and Moderate Temperatures

  • DEFORMATION
  • Published:
Metal Science and Heat Treatment Aims and scope

The TRIP effect and deformation behavior of metastable austenitic steel were studied under tension in the temperatures range from –120 to +200°C. The original steel microstructure consists of austenite and martensite (50 : 50). The optimal combination of the ultimate strength (about 2395 MPa) and percent elongation (28%) was observed at –100°C due to the TRIP effect, which did not exist above 100°C and below –120°C. The DSC and DMA methods were used to study the transformation temperatures. Based on the analysis of the deformation curves, phase transformation temperatures, and fracture surfaces, changes in the deformation mechanisms at different temperatures can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. V. Zackay, E. Parker, D. Fahr, et al., Trans. ASM, 60(2), 252 – 259 (1967).

    CAS  Google Scholar 

  2. M. I. Goldshteyn, S. V. Grachev, and Yu. G. Veksler, Special Steels: College Textbook [in Russian], MISiS, Moscow (1999).

    Google Scholar 

  3. S. L. Chawla and R. K. Gupta, Materials Selection for Corrosion Control, Materials Park (OH): ASM International (1997).

    Google Scholar 

  4. K. H. Lo, C. H. Shek, and J. K. L. Lai, “Recent developments in stainless steels,” Mater. Sci. Eng. R, 65, 39 – 104 (2009).

    Article  Google Scholar 

  5. N. Fonstein, Advanced High Strength Sheet Steels, Springer, Basel (2015).

    Book  Google Scholar 

  6. S. S. M. Tavares, D. Gunderov, V. Stolyarov, J. M. Neto, “Phase transformation induced by severe plastic deformation in the AISI 304L stainless steel,” Mater. Sci. Eng. A, 358, 32 – 36 (2003).

    Article  Google Scholar 

  7. Yu. M. Lakhtin and V. P. Leontyeva, Material Science: Technical College Textbook [in Russian], Mashinostroyeniye, Moscow (1990).

    Google Scholar 

  8. M. Shirdel, H. Mirzadeh, and M. H. Parsa, “Nanoultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect,” Mater. Charact., 103, 150 – 161 (2015).

    Article  CAS  Google Scholar 

  9. J. Z. Lu, J. S. Zhong, R. Y. Luo, et. al., “Strain rate correspondence of fracture surface features and tensile properties in AISI 304 stainless steel under different LSP impact time,” Surf. Coat. Technol., 221, 88 – 93 (2013).

  10. V. F. Terentyev, A. K. Slizov, and D. V. Prosvirnin, “The manifestation of the TRIP effect in austenitic-martensitic VNS9-Sh steel at various deformation rates,” Deform. Razrush., No. 1, 14 – 18 (2016).

    Google Scholar 

  11. V. V. Stolyarov, E. A. Klyatskina, and V. F. Terentyev, “Suppression of TRIP effect in metastable steel by electrical current,” Lett. Mater., 6(4), 355 – 359 (2016).

    Article  Google Scholar 

  12. S. Martin, S. Wolf, U. Martin, and L. Krüger, “Influence of temperature on phase transformation and deformation mechanisms of cast CrMnNi-TRIP/TWIP steel,” Solid State Phenom., 172–174, 172 – 177 (2011).

    Article  Google Scholar 

  13. A. Müller, C. Segel, M. Linderov, et al., “The Portevin – Le Chatelier effect in a metastable austenitic stainless steel,” Metall. Mater. Trans. A, 47(1), 59 – 74 (2015).

    Article  Google Scholar 

  14. J. V. Tilak Kumar, J. Sudha, K. A. Padmanabhan, et al., “Influence of strain rate and strain at temperature on TRIP effect in a metastable austenitic stainless steel,” Mater. Sci. Eng. A, 777, 139046 (2020).

    Article  CAS  Google Scholar 

  15. V. V. Stolyarov, K. A. Padmanabhan, and V. F. Terentyev, “Temperature dependence of the TRIP effect in a metastable austenitic stainless steel,” Lett. Mater., 9(1), 113 – 117 (2019).

    Article  Google Scholar 

  16. O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann, “Phase transformations and mechanical properties of Fe – Mn – Si – Al TRIP steels,” J. de Phys. IV France, No. 07(C5), 383 – 388 (1997).

  17. M. R. Berrahmoune, S. Berveiller, K. Inal, et al., “Analysis of the martensitic transformation at various scales in TRIP steel,” Mater. Sci. Eng. A, 378, 304 – 307 (2004).

    Article  Google Scholar 

  18. N. Tsuchida, Y. Yamaguchi, Y. Morimoto, et al., “Effects of temperature and strain rate on TRIP effect in SUS301L metastable austenitic stainless steel,” ISIJ Int., 53(10), 1881 – 1887 (2013).

    Article  CAS  Google Scholar 

  19. V. F. Terentyev, V. V. Stolyarov, A. V. Frolova, and V. P. Sirotinkin, “Mechanical properties of VNS9-Sh TRIP steel at different test temperatures,” Deform. Razrush. Mater., No. 11, 31 – 36 (2019).

    Article  Google Scholar 

  20. Yu. G. Virakhovskii, I. Ya. Georgieva, Ya. B. Gurevich, et al., “The use of deformation-induced martensitic transformation to increase the plasticity of warm work-hardened austenitic steels,” Fiz. Met. Metalloved., 32(2), 348 – 363 (1971).

    CAS  Google Scholar 

  21. W. Li, S. Zhao, H. Zhang, et al., “Relationship between bake hardening, Snoek-Köster and dislocation-enhanced Snoek peaks in coarse grained low carbon steel,” Arch. Metall. Mater., No. 61, 1723 – 1732 (2016).

    Article  CAS  Google Scholar 

  22. E. Menendez, J. Sort, M. O. Liedke, et al., “Controlled generation of ferromagnetic martensite from paramagnetic austenite in AISI 316L austenitic stainless steel,” J. Mater. Res., 24(2), 565 – 572 (2009).

    Article  CAS  Google Scholar 

  23. V. F. Terentyev, D. V. Prosvirnin, A. K. Slizov, et al., “Behavior patterns of thin-sheet austenitic-martensitic VNS9-Sh TRIP steel under static and cyclic deformation conditions,” Deform. Razrush. Mater., No. 8, 39 – 47 (2017).

  24. V. F. Terentyev, A. A. Ashmarin, E. N. Blinova, et al., “Study of the dependence of mechanical properties and structure of VNS9-Sh TRIP steel on tempering temperature,” Deform. Razrush. Mater., No. 6, 20 – 25 (2018).

Download references

This study was supported by the Russian Foundation for Basic Research (Grant No. 16-58-48001) and Department of Science and Technology (India) (Grant No. DST/INT/RFBR/IDIR/P-04/2016).

The authors would like to thank Prof. K. A. Padmanabhan for study discussions, Prof. V. F. Terentyev for providing the samples and XRD analysis, and S. I. Sinev for assistance in conducting the DSC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Stolyarov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 45 – 51, June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyarov, V.V., Frolova, A.V., Tilak Kumar, J.V. et al. Deformation Behavior of Metastable Austenitic Steel at Low and Moderate Temperatures. Met Sci Heat Treat 63, 334–340 (2021). https://doi.org/10.1007/s11041-021-00691-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00691-9

Key words

Navigation