Skip to main content
Log in

Electrically active polymers and their application

  • Conductive Materials
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article reviews some of the applications of electrically active polymers. This field originated about 20 years ago with the discovery that polyacetylene became highly conductive when it was doped (i.e., oxidized). Research in the area of conductive polymers has resulted in some applications, which are discussed in this review. The field has recently, however, shifted to investigating the applications of these polymers in their undoped form, particularly in light-emitting diodes and thin-film transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.K. Chiang et al.,J. Am. Chem. Soc., 100 (1978), p. 1013.

    Article  CAS  Google Scholar 

  2. S.J. Davies et al.,Synthetic Metals, 69 (1995), p. 209.

    Article  CAS  Google Scholar 

  3. T. Ito et al.,J. Polym. Sci., Polym. Chem. Ed., 12 (1974), p. 1.

    Article  CAS  Google Scholar 

  4. J. Tsukamoto et al.,Synthetic Metals, 41–43 (1991), p. 7.

    Article  Google Scholar 

  5. H. Naarmann et al.,Synthetic Metals, 22 (1987), p. 1.

    Article  CAS  Google Scholar 

  6. G. Kossmehl et al.,Makromol. Chem. Rapid Commun., 2 (1981), p. 551.

    Article  CAS  Google Scholar 

  7. A.F. Diaz et al.,J. Chem. Soc. Chem. Commun. (1980), p. 348.

  8. J. Rodriquez et al.,Synthetic Metals, 71:1–3 (1996), p. 301.

    Article  Google Scholar 

  9. G.E. Wnek et al.,Polym. Commun., 20 (1979), p. 1443.

    Google Scholar 

  10. D.R. Gagnon et al.,Polym. Bull., 12 (1984), p. 293.

    Article  CAS  Google Scholar 

  11. I. Murase et al.,Polym. Commun., 25 (1984), p. 327.

    CAS  Google Scholar 

  12. M. Ahlskog et al.,Act. Poly. El., 140–143 (85) (1996), p. 3.

    Google Scholar 

  13. A.G. MacDiarmid et al.,Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem., 25 (1984), p. 248.

    CAS  Google Scholar 

  14. S.J. Davies et al.,Synthetic Metals, 69 (1995), p. 209.

    Article  CAS  Google Scholar 

  15. M. Granstion et al.,Polymer, 36 (15) (1995), p. 2867.

    Article  Google Scholar 

  16. R.L. Elsenbaumer,Synthetic Metals, 15 (1986), p. 169.

    Article  CAS  Google Scholar 

  17. M.E. Galvin et al.,Polymer, 23 (1982), p. 795.

    Article  CAS  Google Scholar 

  18. M.E. Galvin et al.,Polym. Bull., 13 (1985), p. 109.

    CAS  Google Scholar 

  19. L.W. Shacklette et al.,Synthetic Metals, 57 (1993), p. 3532.

    Article  CAS  Google Scholar 

  20. Y. Cao et al.,Synthetic Metals, 48 (1992), p. 9.

    Article  Google Scholar 

  21. K.F. Schoch and H.E. Saunders,IEEE Spectrum, June (1992), p. 52.

    Article  Google Scholar 

  22. J. Alper,Science, 246 (1989), p. 208.

    Article  Google Scholar 

  23. S. Roberts and G. Ondrey,Chemical Engineering, 103(7) (1996), p. 44.

    CAS  Google Scholar 

  24. G.E. Collins and L.J. Buckley,Synthetic Metals, 78 (1996), p. 93.

    Article  CAS  Google Scholar 

  25. A. Heeger and J. Long, Jr.,Optics and Photonics News, August (1996), p. 24.

    Google Scholar 

  26. Q. Pei and O. Inganas,Synthetic Metals, 55 (1993), p. 3730.

    Article  Google Scholar 

  27. M. Winokur et al.,Macromolecules, 24 (1991), p. 3812.

    Article  CAS  Google Scholar 

  28. O. Inganas, private communication.

  29. T. Wakimoto et al.,SID 96 Digest (1996), p. 814.

  30. J.R. Sheats et al.,Science, 273 (1996), p. 884.

    Article  CAS  Google Scholar 

  31. J.H. Burroughes et al.,Nature, 347 (1990), p. 539.

    Article  CAS  Google Scholar 

  32. P.L. Burn et al.,Nature, 356 (1992), p. 47.

    Article  CAS  Google Scholar 

  33. F. Papadimitrakopoulos et al.,Chem. of Mat., 6:9 (1994), p. 1563.

    Article  CAS  Google Scholar 

  34. F. Papadimitrakopoulos et al.,J. Mol. Crsy. & Liq. Crys., 256 (1994), p. 663.

    Article  CAS  Google Scholar 

  35. S. Son et al.,Science, 269 (1995), p. 376.

    Article  CAS  Google Scholar 

  36. I.D. Parker et al.,J. Appl. Phys., 75(3) (1994), p. 1656.

    Article  CAS  Google Scholar 

  37. D.B. Romero et al.,Optical Eng., 34(7) (1995), p. 1987.

    Article  CAS  Google Scholar 

  38. A.R. Brown et al.,Appl. Phys. Lett., 61(27) (1992), p. 2793.

    Article  CAS  Google Scholar 

  39. M. Strukelj et al.,Science, 267 (1995), p. 1969.

    Article  CAS  Google Scholar 

  40. X.C. Li et al.,J. Chem. Soc.-Cehm. Comm., 21 (1995), p. 2211.

    Article  Google Scholar 

  41. N.C. Greenham et al.,Nature, 365 (1993), p. 628.

    Article  CAS  Google Scholar 

  42. G. GustaLsson et al.,Nature, 357 (1992), p. 477.

    Article  Google Scholar 

  43. Z. Yang et al.,Macromolecules, 26 (5)(1993), p. 1188.

    Article  CAS  Google Scholar 

  44. T. Nakayama,Opt. Rev., 2 (1995), p. 39.

    Article  CAS  Google Scholar 

  45. M.R. Andersson et al.,Macromolecules, 28 (1995), p. 7525.

    Article  CAS  Google Scholar 

  46. M. Berggren et al.,Nature, 372 (1994), p. 444.

    Article  CAS  Google Scholar 

  47. A. Dodabalapur et al.,Appl. Phys. Lett., 65 (1994), p. 2308.

    Article  CAS  Google Scholar 

  48. A. Dodabalapur et al.,App. Phys. Lett., 64 (1994), p. 2486.

    Article  CAS  Google Scholar 

  49. P. May,SID 96 Digest (1996), p. 192.

  50. R. Service,Science, 273 (1996), p. 16.

    Article  Google Scholar 

  51. B.H. Cumpston et al.,Mat. Res. Soc. Symp. Proc. 413, ed L. Dalton et al. (Pittsburgh, PA: MRS, 1995).

    Google Scholar 

  52. B.H. Cumpton and K.F. Jensen,TRIP, 4 (5) (1996), p. 68.

    Google Scholar 

  53. J.C. Scott et al.,J. Appl. Phys., 79 (1996), p. 2745.

    Article  CAS  Google Scholar 

  54. D.D. Roitman et al.,Int'l SAMPE Conf. Ser., 27 (1995), p. 681.

    CAS  Google Scholar 

  55. Y. Yang et al.,Appl. Phys. Lett., 64 (1994), p. 1245.

    Article  CAS  Google Scholar 

  56. J. Tsukamoto et al.,Synthetic Metals, 4 (1982), p. 177.

    Article  CAS  Google Scholar 

  57. A. Tsumura et al.,Synthetic Metals, 25 (1988), p. 11.

    Article  CAS  Google Scholar 

  58. J.H. Burroughes et al.,Nature, 335 (1988), p. 137.

    Article  Google Scholar 

  59. G. Horowitz et al.,Solid State Comm., 72 (1989), p. 381.

    Article  CAS  Google Scholar 

  60. D. Fichou et al.,Synthetic Metals, 28 (1989), p. 723.

    Article  Google Scholar 

  61. L. Torsi et al.,J. Appl. Phys., 78 (1995), p. 1088.

    Article  CAS  Google Scholar 

  62. A.R. Brown,Science, 270 (1995), p. 972.

    Article  CAS  Google Scholar 

  63. H. Fuchigami et al.,J. Appl. Phys. Lett., 63 (10) (1993), p. 137.

    Article  Google Scholar 

Download references

Authors

Additional information

Mary E. Galvin earned her Sc.D. in materials science from the Massachusetts Institute of Technology in 1984. She is currently a distinguished member of the technical staff at Bell Laboratories, Lucent Technologies, in Murray Hill, New Jersey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galvin, M.E. Electrically active polymers and their application. JOM 49, 52–55 (1997). https://doi.org/10.1007/BF02914658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914658

Keywords

Navigation