We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Vignin diversity in wild and cultivated taxa ofVigna unguiculata (L.) walp. (fabaceae)

La diversité de la vignine parmi des taxons sauvages et cultivés deVigna unguiculata (l.) walp. (fabaceae)

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

Eighty-one cultivated and 55 wild accessions were characterized using one- and two-dimensional isoelectric focusing (1D and 2D IEF)/SDS-PAGE and immuno-detection techniques to examine genetic diversity present within cultivated and wild taxa inVigna unguiculata (L.) Walp. Twenty-seven unique banding patterns were identified in the vignin (or Gl) fraction of the major seed storage proteins. These patterns were controlled by at least four interacting genes, two of which were tightly linked and a third which also may be linked. Due to the tremendous amount of variation in these wild taxa it is not possible to make definitive statements about either the taxonomic or geographic distribution of vignin types. These results give no final answer to the identity of the progenitor of cowpea or the center of domestication, but do pose some interesting questions to be asked as the genetic relationships among the wild and cultivated taxa in this species are unraveled.

Résumé

Quatre-vingt-un formes cultivées et 55 formes sauvages ont été analysées par électrophorèse en gel de polyacrylamide-SDS à une et deux dimensions et par immuno-detection afin d’examiner la diversité génétique de Vigna unguiculata (L.) Walp. Vingt-sept patrons uniques de bandes ont été identifiés dans la fraction de la vignine, la protéine principale de la sentence. Ces patrons sont contrôlés par au moins quatre gènes, deux desquels sont fortement liés tandis qu ’un troisième pourrait l’être. A cause du niveau de variation très élevé parmi les formes sauvages, il ne nous a pas été possible d’établir des conclusions fermes au sujet de la distribution géographique et taxonomique des différents types de vignine. Nos résultats n ’apportent pas de réponse définitive quant à l’identité des formes ancestrales du niébé et la localisation du ou des centres de domestication; en revenche, Us permettent de poser d’intéressantes questions sur les relations entre formes sauvages et cultivées de cette espèce afin de guider des recherches futures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Baudoin, J. P., and R. Maréchal. 1985. Genetic diversity inVigna. Pages 3–11in S. R. Singh and K. O. Rachie, eds., Cowpea research, production and utilization. Wiley, New York.

    Google Scholar 

  • Bressani, R. 1985. Nutritive value of cowpea. Pages 353–359in S. R. Singh and K. O. Rachie, eds., Cowpea research, production and utilization. Wiley, New York.

    Google Scholar 

  • Carasco, J. F., R. Croy, E. Derbyshire, and D. Boulter. 1978. The isolation and characterization of the major polypeptides of the seed globulin of cowpea (Vigna unguiculata L. Walp) and the sequential synthesis in developing seeds. Journal of Experimental Botany 29: 309–323.

    Article  CAS  Google Scholar 

  • Cerdeira, A. L., A. W. Cole, and D. S. Luther. 1985. Cowpea (Vigna unguiculata) seed protein response to glyphosate. Weed Science 33: 1–6.

    CAS  Google Scholar 

  • Faris, D. G. 1965. The origin and evolution of the cultivated forms ofVigna sinensis. Canadian Journal of Genetics and Cytology 7: 433–152.

    Google Scholar 

  • Gepts, P. 1990. Genetic diversity of seed storage pro- teins in plants. Pages 64–82in A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir, eds., Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, MA.

    Google Scholar 

  • —,V. Llaca, R. O. Nodari, and L. Panella. 1992. Analysis of seed proteins, isozymes, and RFLPs for genetic and evolutionary studies inPhaseolus. Pages 63–93in H. F. Linskens and J. F. Jackson, eds., Seed analysis. Modern Methods of Plant Analysis New Series, Volume 14. Springer, Berlin.

    Google Scholar 

  • —,T. C. Osborn, K. Rashka, and F. A. Bliss. 1986. Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Economic Botany 40: 451–468.

    CAS  Google Scholar 

  • Harlow, E., and D. Lane, eds. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Helms, D., L. Panella, I. W. Buddenhagen, C. L. Tucker, K. W. Foster, and P. L. Gepts. 1991. Registration of ‘California blackeye 88’ cowpea. Crop Science 31:1703–1704.

    Google Scholar 

  • Higgins, T. J. V. 1984. Synthesis and regulation of major proteins in seeds. Pages 191–221in W. R. Briggs, R. L. Jones, and V. Walbot, eds., Annual review of plant physiology. Annual Reviews, Palo Alto, CA.

  • Khan, R. I., J. A. Gatehouse, and D. Boulter. 1980. The seed proteins of cowpea (Vigna unguiculata L. Walp.). Journal of Experimental Botany 31: 1599–1611.

    Article  CAS  Google Scholar 

  • Koenig, R. L., S. P. Singh, and P. Gepts. 1990. Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Economic Botany 44: 50–60.

    Google Scholar 

  • Krishna, T. G., and R. Mitra. 1988. The probable genome donors toArachis hypogaea L. based on arachin seed storage protein. Euphytica 37: 47–52.

    Article  Google Scholar 

  • Ladizinsky, G., and A. Adler. 1975. The origin of chickpea as indicated by seed protein electrophoresis. Israel Journal of Botany 24: 183–189.

    Google Scholar 

  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lagudah, E. S., and G. M. Halloran. 1988. Phylo-genetic relationships ofTriticum tauschii the D genome donor to hexaploid wheat. 1. Variation in HMW subunits of glutenin and gliadins. Theoretical and Applied Genetics 75: 592–598.

    Article  CAS  Google Scholar 

  • Lush, W. M., and L. T. Evans. 1981. The domestication and improvement of cowpeas (Vigna ungukulata (L.) Walp.). Euphytica 30: 379–587.

    Article  Google Scholar 

  • Ma, Y., and F. A. Bliss. 1978. Seed proteins of common bean. Crop Science 18: 431–437.

    CAS  Google Scholar 

  • Maréchal, R., J. M. Mascherpa, and F. Stainier. 1978. Etude taxonomique d’un groupe complexe d’espéces des genresPhaseolus etVigna (Papilionaceae) sur la base de données morphologiques et polli- niques, traitees par Panalyse informatique. Boissiera 28: 1–273.

    Google Scholar 

  • Mishra, S. N., J. S. Verma, and S. J. B. A. Jayasekara. 1985. Breeding cowpeas to suit Asian cropping systems and consumer tastes. Pages 117–135in S. R. Singh and K. O. Rachie, eds., Cowpea research, production and utilization. Wiley, New York.

    Google Scholar 

  • Mithen, R., and H. Kibblewhite. n.d. Taxonomy and ecology ofVigna unguiculata in south-central Africa. Kirkia, in press.

  • Murray, D. R., K. F. Mackenzie, F. Vairnhos, M. B. Peoples, C. A. Atkins, and J. S. Pate. 1983. Electrophoretic studies of the seed proteins of cowpea,Vigna unguiculata (L.) Walp. Zeitschrift für Pflan-zenphysiologie 109: 363–370.

    CAS  Google Scholar 

  • Ng, N. O. 1990. Recent developments in cowpea germplasm collection, conservation, evaluation and research at the genetic resources unit, IITA. Pages 13–28in N. Q. Ng and L. M. Monti, eds., Cowpea genetic resources. Amarin, Thailand.

    Google Scholar 

  • Osborne, T. B. 1919. The vegetable proteins. Longmans, Green, London.

    Google Scholar 

  • Paino, M., M. D’Urzo, M. Pedalino, S. Grillo, R. Rao, and M. Tucci. 1990. Variability in major seed proteins in differentVigna species. Pages 90–100in N. Q. Ng and L. M. Monti, eds., Cowpea genetic resources. Amarin, Thailand.

    Google Scholar 

  • Panda, R. C., O. Aniel Kumar, and K. G. Raja Rao. 1986. The use of seed protein electrophoresis in the study of phylogenetic relationships in chili pepper (Capsicum L.). Theoretical and Applied Genetics 72: 665–670.

    Article  CAS  Google Scholar 

  • Panella, L., and P. Gepts. 1992. Genetic relationships withinVigna unguiculata (L.) Walp based on isozyme analyses. Genetic Resources and Crop Evolution 39: 71–88.

    Google Scholar 

  • Pedalino, M., M. Paino, M. D’Urzo, A. Costa, S. Grillo, and R. Rao. 1990. Biochemical characterization of cowpea seed proteins. Pages 81–89in N. Q. Ng and L. M. Monti, eds., Cowpea genetic resources. Amarin, Thailand.

    Google Scholar 

  • —, —, —,and S. Grillo. 1988. Variability in seed major globulins within the genusVigna. Genetica Agraria 42: 87–88.

    Google Scholar 

  • Piper, C. V. 1913. The wild prototype of the cowpea. USDA, Bur. Plant Indus. Bull. 124: 29–32.

    Google Scholar 

  • Polignano, G. B., R. Splendido, and P. Perrino. 1990. Seed storage proteins diversity in faba bean (Vicia faba L.) entries from Ethiopia and Afghanistan. Journal of Genetics and Breeding 44: 31–38.

    Google Scholar 

  • Rawal, K. M. 1975. Natural hybridization among wild, weedy, and cultivatedVigna unguiculata (L.) Walp. Euphytica 24: 699–707.

    Article  Google Scholar 

  • Schinkel, C., and P. Gepts. 1988. Phaseolin diversity in the tepary bean,Phaseolus acutifolius A. Gray. Plant Breeding 101: 292–301.

    Article  Google Scholar 

  • Smartt, J. 1984. Gene pools in grain legumes. Economic Botany 38: 24–35.

    Google Scholar 

  • —. 1985. Evolution of grain legumes. III. Pulses in the genusVigna. Experimental Agriculture 21: 87–100.

    Article  Google Scholar 

  • Steele, W. M. 1976. Cowpeas. Pages 183–185in N. W. Simmonds, ed., Evolution of crop plants. Longman, London.

    Google Scholar 

  • —,D. J. Allen, and R. J. Summerfield. 1985. Cowpea (Vigna unguiculata (L.) Walp.). Pages 520–583in R. J. Summerfield and E. H. Roberts, eds., Grain legume crops. William Collins, London.

    Google Scholar 

  • —,and K. L. Mehre. 1980. Structure, evolution, and adaptation to farming systems and environments inVigna. Pages 393–404in R. J. Summer-field and A. H. Bunting, eds., Advances in legume science. HMSO, London.

    Google Scholar 

  • Suiter, K. A., J. F. Wendel, and J. S. Case. 1983. LINKAGE-1: a PASCAL computer program for the detection and analysis of genetic linkage. Journal of Heredity 74: 203–204.

    PubMed  CAS  Google Scholar 

  • Tomooka, N., C. Lairungreang, P. Nakeeraks, Y. Egawa, and C. Thavarasook. 1992. Center of genetic diversity and dissemination pathways in mung bean deduced from seed protein electrophoresis. Theoretical and Applied Genetics 83: 289–293.

    Article  Google Scholar 

  • Vaillancourt, R. E., and N. F. Weeden. 1992 Chloroplast DNA polymorphism suggests Nigerian center of domestication for the cowpea,Vigna unguiculata, Leguminosae. American Journal of Botany 79: 1194–1199.

    Article  CAS  Google Scholar 

  • -, -,and J. Barnard, n.d. Isozyme diversity in the cowpea species complex (Vigna unguiculata). Crop Science, in press.

  • Wight, W. F. 1907. The history of the cowpea and its introduction into America. USDA, Bureau of Plant Industries Bulletin 102.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panella, L., Kami, J. & Gepts, P. Vignin diversity in wild and cultivated taxa ofVigna unguiculata (L.) walp. (fabaceae). Econ Bot 47, 371–386 (1993). https://doi.org/10.1007/BF02907351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02907351

Key Words

Navigation