Skip to main content
Log in

Mating interactions between coexisting dipoloid, triploid and tetraploid cytotypes ofHieracium Echioides (Asteraceae)

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Experimental crosses between diploids, triploids and tetraploids ofHieracium echioides were made to examine mating interactions. Specifically, cytotype diversity in progeny from experimental crosses, intercytotype pollen competition as a reproductive barrier between diploids and tetraploids, and differences in seed set between intra- and intercytotype crosses were studied. Only diploids were found in progeny from 2x × 2x crosses. The other types of crosses yielded more than one cytotype in progeny, but one cytotype predominated in each cross type: diploids (92%) in 2x × 3x crosses, tetraploids (88%) in 3x × 2x crosses, triploids (96%) in 2x × 4x crosses, triploids (90%) in 4x × 2x crosses, tetraploids (60%) in 3x × 3x crosses, pentaploids (56%) in 3x × 4x crosses, triploids (80%) in 4x × 3x crosses and tetraploids (88%) in 4x × 4x crosses. No aneuploids have been detected among karyologically analyzed plants. Unreduced egg cell production was detected in triploids and tetraploids, but formation of unreduced pollen was recorded only in two cases in triploids. Triploid plants produced x, 2x and 3x gametes: in male gametes x (92%) gametes predominated whereas in female gametes 3x (88%) gametes predominated.

Cytotype diversity in progeny from crosses where diploids and tetraploids were pollinated by mixture of pollen from diploid and tetraploid plants suggested intercytotype pollen competition to serve as a prezygotic reproductive barrier. No statistically significant difference in seed set obtained from intra- and intercytotype crosses between diploids and tetraploids was observed, suggesting the absence of postzygotic reproductive barriers among cytotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Averett J.E. (1980): Polyploidy in plant taxa: summary. In:Lewis W.H. (ed.),Polyploidy, biological relevance, Plenum Press, New York, pp. 269–273.

    Google Scholar 

  • Bräutigam S. (1992):Hieracium L. In:Meusel H. &JäGER E.J. (eds.),Vergleichende Chorologie der zentraleuropäischen Flora 3, Gustav Fischer, Jena, Stuttgart et New York, pp. 325–333, 550–560.

    Google Scholar 

  • Bräutigam S. &Bräutigam E. (1996): Determination of the ploidy level in the genusHieracium subgenusPilosella (HILL)S.F. Gray by flow cytometric DNA analysis.Folia Geobot. Phytotax. 31: 315–321.

    Article  Google Scholar 

  • Bretagnolle F. &Thompson J.D. (1995): Tansley review no. 78. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants.New Phytol. 129: 1–22.

    Article  Google Scholar 

  • Bretagnolle F. &Thompson J.D. (1996): An experimental study of ecological differences in winter growth between sympatric diploid and autotetraploidDactylis glomerata.J. Ecol. 84: 343–351.

    Article  Google Scholar 

  • Burton T.L. &Husband B.C. (2000): Fitness differences among diploids, tetraploids, and their triploid progeny inChamerion angustifolium: Mechanisms of inviability and implications for polyploid evolution.Evolution 54: 1182–1191.

    PubMed  CAS  Google Scholar 

  • Burton T.L. &Husband B.C. (2001): Fecundity and offspring ploidy in matings among diploid, triploid and tetraploidChamerion angustifolium (Onagraceae): consequences for tetraploid establishment.Heredity 87: 573–582.

    Article  PubMed  CAS  Google Scholar 

  • De Wet J.M.J. (1980): Origins of polyploids. In:Lewis W.H. (ed.),Polyploidy, biological relevance, Plenum, New York, pp. 3–16.

    Google Scholar 

  • Dyer A.F. (1963): The use of lacto-propionic orcein in rapid squash methods for chromosome preparations.Stain Technol. 38: 85–90.

    CAS  Google Scholar 

  • Felber F. (1991): Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes.J. Evol. Biol. 4: 195–207.

    Article  Google Scholar 

  • Fowler N.L. &Levin D.A. (1984): Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor.Amer. Naturalist 124: 703–711.

    Article  Google Scholar 

  • Gadella T.W.J. (1987): Sexual tetraploid and apomictic pentaploid populations ofHieracium pilosella (Compositae).Pl. Syst. Evol. 157: 219–245.

    Article  Google Scholar 

  • Gadella T.W.J. (1988): Some notes on the origin of polyploidy inHieracium pilosella aggr.Acta Bot. Neerl. 37: 515–522.

    Google Scholar 

  • Gadella T.W.J. (1991): Variation, hybridization and reproductive biology ofHieracium pilosella L.Proc. Kon. Ned. Akad. Wetensch., Ser.C., Biol. Med. Sci. 94: 455–488.

    Google Scholar 

  • Hardy O.J., Loose M., Vekemans X. &Meerts P. (2001): Allozyme segregation and inter-cytotype reproductive barriers in the polyploid complexCentaurea jacea.Heredity 87: 136–145.

    Article  PubMed  CAS  Google Scholar 

  • Hardy O.J., Vanderhoeven S., de Loose M. &Meerts P. (2000): Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea) from a contact zone in the Belgian Ardennes.New Phytol. 146: 281–290.

    Article  CAS  Google Scholar 

  • Harlan J.R. &De Wet J.M.J. (1975): On Ö. Winge and a prayer: the origins of polyploidy.Bot. Rev. 41: 361–390.

    Article  Google Scholar 

  • Husband B.C. (2000): Constraints on polyploid evolution: a test of the minority cytotype exclusion principle.Proc. Roy. Soc. London, Ser. B, Biol. Sci. 267: 217–223.

    Article  CAS  Google Scholar 

  • Husband B.C. (2004): The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations.Biol. J. Linn. Soc. 82: 537–546.

    Article  Google Scholar 

  • Husband B.C. &Schemske D.W. (1998): Cytotype distribution at a diploid-tetraploid contact zone inChamerion (Epilobium) angustifolium (Onagraceae).Amer. J. Bot. 85: 1688–1694.

    Article  Google Scholar 

  • Husband B.C., Schemske D.W., Burton T.L. &Goodwillie C. (2002): Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploidChamerion angustifolium.Proc. Roy. Soc. London, Ser. B, Biol. Sci. 269: 2565–2571.

    Article  Google Scholar 

  • Jay M., Reynaud J., Blaise S. &Cartier D. (1991): Evolution and differentiation ofLotus corniculatus/Lotus alpinus populations from French south-western Aps. III. Conclusions.Evol. Trends Pl. 5: 157–160.

    Google Scholar 

  • Kashin A.S. &Chernishova M.P. (1997): Chastota apomiksisa v populyatsiyakh nekotorykh vidovTaraxacum iHieracium (Asteraceae) (The frequency of apomixis in populations of someTaraxacum andHieracium species (Asteraceae).Bot. Zhurn. 82: 14–24.

    Google Scholar 

  • Krahulcová A. &Krahulec F. (2000): Offspring diversity inHieracium subgen.Pilosella (Asteraceae): new cytotypes from hybridization experiments and from open pollination.Fragm. Florist. Geobot. 45: 239–255.

    Google Scholar 

  • Krahulcov’a A., Chrtek J. &Krahulec F. (1999): Autogamy inHieracium subgen.Pilosella. Folia Geobot. 34: 377–390.

    Article  Google Scholar 

  • Krahulcová A., Krahulec F. &Chapman H.M. (2000): Variation inHieracium subgen.Pilosella (Asteraceae): what do we know about its sources?Folia Geobot. 35: 319–338.

    Article  Google Scholar 

  • Krahulcová A., Papoušková S. &Krahulec F. (2004): Reproduction mode in the allopolyploid facultatively apomictic hawkweedHieracium rubrum (Asteraceae, H. subgen.Pilosella).Hereditas 141: 19–30.

    Article  PubMed  Google Scholar 

  • Levin D.A. (1975): Minority cytotype exclusion in local plant populations.Taxon 24: 35–43.

    Article  Google Scholar 

  • Lumaret R. &Barrientos E. (1990): Phylogenetic relationships and gene flow between sympatric diploid and tetraploid plants ofDactylis glomerata (Gramineae).Pl. Syst. Evol. 169: 81–96.

    Article  Google Scholar 

  • Lysák M.A. &Dolezel J. (1998): Estimation of nuclear DNA content inSesleria (Poaceae).Caryologia 51: 123–132.

    Google Scholar 

  • Májovský et al. (1970): Index of chromosome numbers of Slovakian Flóra. Part 2.Acta Fac. Rerum Nat. Univ. Comenianae, Bot. 18: 45–60.

    Google Scholar 

  • Májovský J., Uhríková A., Javorčíková D., Mičieta K., Králik E., Dúbravcová Z., Feráková V., Murín A., Černušáková D., Hindáková M., Schwarzová T. &Záborský J. (2000): Prvý doplnok karyotaxonomického prehl’adu flóry Slovenska (First supplement to the karyotaxonomical survey of the flora of Slovakia).Acta Fac. Rerum Nat. Univ. Comenianae, Bot. Suppl. 1: 1–127.

    Google Scholar 

  • Marks G.E. (1966): The origin and significance of intraspecific polyploidy: experimental evidence fromSolanum chacoense.Evolution 20: 552–557.

    Article  Google Scholar 

  • Masterson J. (1994): Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms.Science 264: 421–24.

    Article  PubMed  Google Scholar 

  • Otto F. (1990): DAPi staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In:Crissman H.A. &Darzynkiewicz Z. (eds.),Methods in cell biology 33, Academic Press, New York, pp. 105–110.

    Google Scholar 

  • Peckert T. (2001): Hieracium echioidesa H. rothianumve střední Evropě (Hieracium echioidesand H. rothianumin Central Europe). Diploma thesis, Department of Botany, Faculty of Science, Charles University, Prague.

    Google Scholar 

  • Peckert T., Chrtek J. jun. &Plačková I. (2005): Genetic variation in agamospermous populations ofHieracium echioides (Compositae) in southern Slovakia and northern Hungary (Danube Basin).Preslia 77: 307–315.

    Google Scholar 

  • Petit C., Bretagnolle F. &Felber F. (1999): Evolutionary consequences of diploid-polyploid hybrid zones in wild species.Trends Ecol. Evol. 14: 306–311.

    Article  PubMed  Google Scholar 

  • Ramsey J. &Schemske D.W. (1998): Pathways, mechanisms, and rates of polyploid formation in flowering plants.Annual Rev. Ecol. Syst. 29: 467–501.

    Article  Google Scholar 

  • Richards A.J. (1997):Plant breeding systems. Ed. 2. Chapman & Hall, London.

    Google Scholar 

  • Rodríguez D.J. (1996): A model for the establishment of polyploidy in plants.Amer. Naturalist 147: 33–46.

    Article  Google Scholar 

  • Rotreklová O., Krahulcová A., Mráz P., Mrázová V., MáRTONFIOVá L., Peckert T. &Šingliarová B. (2005): Chromosome numbers and breeding systems in some species ofHieracium subgen.Pilosella from Europe.Preslia 77: 177–195.

    Google Scholar 

  • Rotreklová O., Krahulcová A., Vaňková D., Peckert T. &Mráz P. (2002): Chromosome numbers and breeding systems in some species ofHieracium subgen.Pilosella from Central Europe.Preslia 74: 27–44.

    Google Scholar 

  • Segraves K.A., Thompson J.N., Soltis P.S. &Soltis D.E. (1999): Multiple origins of polyploidy and the geographic structure ofHeuchera grossulariifolia.Molec. Ecol. 8: 253–262.

    Article  Google Scholar 

  • Schuhwerk F. &Lippert W. (1997): Chromosomenzahlen vonHieracium (Compositae, Lactuceae) Teil 1.Sendtnera 4: 181–206.

    Google Scholar 

  • Skalińska M. (1971): Experimental and embryological studies inHieracium aurantiacum L.Acta Biol. Cracov., Ser. Bot. 14: 139–159.

    Google Scholar 

  • Skalińska M. (1973): Further studies in facultative apomixis ofHieracium aurantiacum L.Acta Biol. Cracov., Ser. Bot. 16: 121–133.

    Google Scholar 

  • Skalińska M. (1976): Cytological diversity in the progeny of octoploid facultative apomicts ofHieracium aurantiacum L.Acta Biol. Cracov., Ser. Bot. 19: 39–46.

    Google Scholar 

  • Soltis D.E. (1984): Autopolyploidy inTolmiea menziesii (Saxifragaceae).Amer. J. Bot. 71: 1171–1174.

    Article  Google Scholar 

  • Stebbins G.L. (1950):Variation and evolution in plants. Columbia University Press, New York.

    Google Scholar 

  • Thompson J.D. &Lumaret R. (1992): The evolutionary dynamics of polyploid plants: origins, establishment and persistence.Trends Ecol. Evol. 7: 302–307.

    Article  Google Scholar 

  • Van Dijk P. &Bakx-Schotman T. (1997): Chloroplast DNA phylogeography and cytotype geography in autopolyploidPlantago media.Molec. Ecol. 6: 345–352.

    Article  Google Scholar 

  • Yahara T. (1990): Evolution of agamospermous races inBoehmeria andEupatorium.Pl. Spec. Biol. 5: 183–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Peckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peckert, T., Chrtek, J. Mating interactions between coexisting dipoloid, triploid and tetraploid cytotypes ofHieracium Echioides (Asteraceae). Folia Geobot 41, 323–334 (2006). https://doi.org/10.1007/BF02904945

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02904945

Keywords

Navigation