Skip to main content
Log in

Microbes in rocks and meteorites: a new form of life unaffected by time, temperature, pressure

Microbi in rocce e in meteoriti: una nuova forma di vita non influenzata da tempo, temperatura, pressione

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Crystals, rocks and mineral ores of different origins contain viable microbial life that appears actively swimming under the microscope when the sample is properly fragmented and suspended in a nutrient medium. This form of life in rocks is unaffected by time, since microbes have been found in samples of all geological ages, from about 2.8 Ga to recent rocks, and by pressure and temperature, since it is present in metamorphic and in igneous rocks. From the tests performed, among which those to secure from sample pollution, it emerges that this form of life is not destroyed, as indeed expected, when the rock is heated above 500 °C in a kiln. However, all cloned microbes are sensitive to growth inhibition by specific antibiotics. A similar search, for the presence of microbes in meteorites, shows that also these materials are rich in microorganisms, indicating that these already existed in early Earth formation stages. Some different microbial species, derived from different samples of rocks and meteorites, have been cultured, cloned and classified by 16S rDNA typing and found to be not essentially different from present day organisms. An interesting consequence of these findings, among others, is the support to the hypothesis that life came from outside Earth with the additional indication that it was already present in those materials that accreted to form the solar planetary system.

Riassunto

Cristalli, rocce e minerali di diversa origine contengono microrganismi vitali che si osservano nuotare attivamente al microscopio quando il campione solido è frammentato in modo appropriato, raccolto su un vetrino portaoggetti e sospeso in un mezzo nutriente. Questa forma di vita, quando è all’interno della roccia, non è influenzata dal tempo, perché sono stati trovati microrganismi vitali e coltivabili in campioni di diverse età, a partire da circa 2.8 Ga a rocce recenti, e dalla temperatura e pressione, perché è presente in rocce metamorfiche e in rocce ignee. In alcune prove, fra le molte fatte per assicurarsi da possibili contaminazioni, è risultato che questa forma di vita non è distrutta, come ci si sarebbe effettivamente aspettato, quando la roccia è riscaldata al di sopra di 500 °C in un forno per ceramica, mentre tutte le specie clonate non crescono in presenza di antibiotici specifici. La ricerca con lo stesso approccio di forme microbiche in meteoriti ha mostrato che esse sono ricche in microrganismi, indicando che questi già esistevano durante i primi stadi di formazione della Terra. Alcune specie microbiche, derivate da campioni di rocce e di meteoriti, sono state ottenute in coltura, clonate e classificate con il metodo della tipizzazione del 16S rDNA e sono risultate non dissimili dai microrganismi attuali. Questi risultati avvalorano l’ipotesi che la vita sia venuta dall’esterno della Terra e suggeriscono che fosse già presente nei materiali che, condensandosi, hanno generato i pianeti del sistema solare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banfield J.F., Nealson K.H. (eds.), 1997.Geomicrobiology: Interactions between Microbes and Minerals. Mineralogical Society of America, Washington D.C., vol. 35.

    Google Scholar 

  • Barns S.M., Nierzwicki-Bauer S.A., 1997.Microbial diversity in ocean, surface and subsurface environments. In:J.F. Banfield, K.H. Nealson,Geomicrobiology: Interactions between Microbes and Minerals. Mineralogical Society of America, Washington D.C., vol. 35: 35–80.

    Google Scholar 

  • Cano R.J., Borucki M.K., 1995.Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science, 268: 1060–1064.

    Article  CAS  Google Scholar 

  • Drake M.J., 2000.Accretion and primary differentiation of the Earth. Geochim. Cosmochim. Acta, 64: 2363–2370.

    Article  CAS  Google Scholar 

  • Dworkin J.P., Deamer D.W., Sandford S.A., Allamandola L.J., 2001.Self assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. Proc. Natl. Acad. Sci. USA, 98: 815–819.

    Article  CAS  Google Scholar 

  • Gillet Ph., Barrat J.A., Heulin Th., Achouak W., Lesourd M., Guyot F., Benzerara K., 2000.Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks. Earth and Planetary Science Letters, 175: 161–167.

    Article  CAS  Google Scholar 

  • Gogarten-Boekel Ml., Hilario H., Gogarten J.P., 1995.The effects of heavy meteorite bombardment on early evolution—The emergence of the three domains of life. Origins of Life and Evolution of the Biosphere, 25: 251–264.

    Article  Google Scholar 

  • Golubic S., Seong-Joo L., 1999.Early cyanobacterial fossils record: preservation, palaeoenvironments and identification. Eur. J. Phycol., 34: 339–348.

    Article  Google Scholar 

  • McKay D.S., Gibson E.K. Jr.,Thomas-Keprta K.L., Vali H., Romanek G.S., Clemett S.J., Chillier D.F., Maechling C.R., Zare R.N., 1996.Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273: 924–930.

    Article  CAS  Google Scholar 

  • Nisbet E.G., 2000.The realms of Archean life. Nature, 405: 625–626.

    Article  CAS  Google Scholar 

  • Papike J.J. (ed.), 1998.Planetary Materials. Mineralogical Society of America, Washington D.C., vol. 36.

    Google Scholar 

  • Rasmussen R., 2000.Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature, 405: 676–679.

    Article  CAS  Google Scholar 

  • Rosing M.T., 1999.13 C-depleted carbon in >3700 Ma seafloor sedimentary rocks from West Greenland. Science, 283: 674–676.

    Article  CAS  Google Scholar 

  • Shen Y., Buick R., Canfield D.E., 2001.Isotopic evidence for microbial sulphate reduction in the early Archean era. Nature, 410: 77–81.

    Article  CAS  Google Scholar 

  • Sleep N.H., Zahnle K., Neuhoff P.S., 2001.Carbon dioxide cycling and implications for climate on ancient Earth. Journal of Geophysical Research, 106, in press.

  • Taylor B., Huchon P., Klaus A., Leg 181 Scientific Party, 1999.Continental rifting, Low-angle Normal faulting and Deep Biosphere: Results of Leg 181 Drilling in the Woodlark Basin. Joides Journal, vol. 25, n. 1: 4–7.

    Google Scholar 

  • Vreeland R.H., Rosenzweig W.D., Powers D.W., 2000.Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 407: 896–900.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nella seduta dell’11 maggio 2001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Argenio, B., Geraci, G. & del Gaudio, R. Microbes in rocks and meteorites: a new form of life unaffected by time, temperature, pressure. Rend. Fis. Acc. Lincei 12, 51–68 (2001). https://doi.org/10.1007/BF02904521

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02904521

Key words

Navigation