Skip to main content
Log in

Synergistic effects of cellobiose dehydrogenase and manganese-dependent peroxidases during lignin degradation

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

The synergistic effects of cellobiose dehydrogenase (CDH) and manganese-dependent peroxidases (MnP) on the degradation of kraft pulp cellulolytic enzyme lignin (CEL) were investigated. Addition of CDH significantly increased the amount of water-soluble products reduced from CEL by MnP. CDH facilitated the reduction of the contents of methoxyl, carboxyl, phenolic hydroxyl and total hydroxyl groups of CEL by MnP.1H-NMR analysis showed that addition of CDH also decreased further the amount of protons of CEL degraded by MnP. The results proved for the first time that CDH could promote degradation of lignin by MnP and suggest that CDH could not only promote degradation of cellulose but also is an important part of the lignin biodegradation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ander, P., Marzullo, L., Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation, J. Biotechnol., 1997, 53: 115.

    Article  Google Scholar 

  2. Tuor, U., Winterhalter, K., Fiechter, A., Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay, J. Biotechnol., 1995, 41: 1.

    Article  Google Scholar 

  3. Ander, P., The cellobiose-oxidizing enzymes CBQ and CBO as related to lignin and cellulose degradation—A review, FEMS Microbiol. Rev., 1994, 13: 297.

    Google Scholar 

  4. Eriksson, K. E. L., Habu, N., Samejima, M., Recent advances in fungal cellobiose oxidoreductases, Enzyme Microb. Technol., 1993, 15: 1002.

    Article  Google Scholar 

  5. Henriksson, G., Pettersson, G., Johanson, G. et al., Cellobiose oxidase fromPhanerochaete chrysosporium can be cleaved by papain into two domains, Eur. J. Biochem., 1991, 196: 101.

    Article  Google Scholar 

  6. Wood, D., Wood, P. M., Evidence that cellobiose:quinone oxidoreductase fromPhanerochaete chrysosporium is a breakdown product of cellobiose oxidase, Biochim. Biophys. Acta, 1992, 1119: 90.

    Google Scholar 

  7. Samejima, M., Eriksson, K. E. L., A comparison of the catalytic properties of cellobiose:quinone oxidoreductase and cellobiose oxidase fromPhanerochaete chrysosporium, Eur. J. Biochem., 1992, 207: 103.

    Article  Google Scholar 

  8. Fang, J., Liu, W., Gao, P. J., Cellobiose dehydrogenase fromSchizophyllum commune: Purification and study of some catalytic, inactivation, and cellulose-binding properties, Arch. Biochem. Biophys., 1998, 353: 37.

    Article  Google Scholar 

  9. Wilson, M. T., Hogg, N., Jones, D., Reaction of reduced cellobiose oxidase with oxygen, Biochem. J., 1990, 270: 265.

    Google Scholar 

  10. Roy, B. P., Archibald, F. S., Effects of kraft pulp and lignin onTrametes versicolor carbon metabolism, Appl. Environ. Microbiol., 1993, 59: 1855.

    Google Scholar 

  11. Roy, B. P., Dumonceaux, T., Koukoulas, A. A. et al., Purification and characterization of cellobiose dehydrogenases from the white-rot fungusTrametes versicolor, Appl. Environ. Microbiol., 1996, 62: 4417.

    Google Scholar 

  12. Kremer, S. M., Wood, P. M., Production of Fenton’s reagent by cellobiose oxidase from cellulolytic cultures ofPhanerochaete chrysosporium, Eur. J. Biochem., 1992, 208: 807.

    Article  Google Scholar 

  13. Archibald, F. S., Bourbonnais, R., Jurasek, L. et al., Kraft pulp bleaching and delignification byTrametes versicolor, J. Biotechnol., 1997, 53: 215.

    Article  Google Scholar 

  14. Ma, D. B., Gao, P. J., Wang, Z. N., Preliminary studies on the mechanism of cellulase formation byTrichoderma pseudokoningii S38, Enzyme Microb. Technol., 1990, 12: 631.

    Article  Google Scholar 

  15. Jiang, J. E., Chang, H. M., Bhattacharjee, S. S. et al., Characterization of residual lignins isolated from unbleached and semibleached softwood kraft pulps, J. Wood. Chem. Technol., 1987, 7: 81.

    Article  Google Scholar 

  16. Chen, C. L., Determination of methoxyl groups, in Methods in Lignin Chemistry (eds. Lin, S. Y., Dence, C. W.), Berlin: Springer-Verlag, 1992, 465–472.

    Google Scholar 

  17. Pobiner, H., Improved inflection points in the non-aqueous potentiometric titration of acid functionalities in lignin chemicals by using internal standardization and ion exchange, Anal. Chim. Acta, 1983, 155: 57.

    Article  Google Scholar 

  18. Goldschmid, O., Determination of phenolic hydroxyl content of lignin preparations by ultraviolet spectrophotometry, Anal. Chem., 1954, 26: 1421.

    Article  Google Scholar 

  19. Adler, E., Marton, J., Zur Kenntnis der Carbonyl-Gruppen in Lignin (I), Acta Chem. Scand., 1959, 13: 75.

    Article  Google Scholar 

  20. Huang, F., Gao, P. J., Chen, J. X., Using cyclic liquid-liquid extraction method for isolation and identification of relative compounds during lignin biodegradation, Science in China, Ser. E, 1999, 42(6): 644.

    Article  Google Scholar 

  21. Lundguist, K., NMR studies of lignins (2): Interpretation of the1H NMR spectrum of acetylated birch lignin, Acta Chem. Scand., 1979, B33: 27.

    Article  Google Scholar 

  22. Chen, C. L., Robert, D., Characterization of lignin by1H and13C NMR spectroscopy, Methods Enzymol., 1988, 161: 137.

    Article  Google Scholar 

  23. Faix, O., Grünwald, C., Beinhoff, O., Determination of phenolic hydroxyl group content of milled wood lignins (MWLs) from different botanical origins using selective aminolysis, FTIR,1H-NMR, and UV spectroscopy, Holzforschung, 1992, 46: 425.

    Article  Google Scholar 

  24. Faix, O., Argyropoulos, D. S., Robert, D. et al., Determination of hydroxyl groups in lignins evaluation of1H-,13C−,31P-NMR, FTIR and wet chemical methods, Holzforschung, 1994, 48: 387.

    Google Scholar 

  25. Vázquez, G., Antorrena, G., González, J. et al., FTIR,1H and13C NMR characterization of acetosolv-solubilized pine and eucalyptus lignins, Holzforschung, 1997, 51: 158.

    Google Scholar 

  26. Lu, X. M., Li, Y. Z., Wang, W. et al., Study of the role of lignin peroxidase produced by phanerochaete chrysosporium in depolymerization of natural lignin, Mycosystema (in Chinese), 1998, 17(2): 179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiji Gao.

About this article

Cite this article

Huang, F., Fang, J., Lu, X. et al. Synergistic effects of cellobiose dehydrogenase and manganese-dependent peroxidases during lignin degradation. Chin.Sci.Bull. 46, 1956–1961 (2001). https://doi.org/10.1007/BF02901905

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02901905

Keywords

Navigation