Skip to main content
Log in

Predictive value of p53, Bcl2 and bax in the radiotherapy of head and neck cancer

  • Article
  • Published:
Pathology & Oncology Research

Abstract

Radiation is known to induce DNA damage resulting in the onset of apoptosis. The apoptosis is modulated by p53, Bcl2 and Bax proteins. High level of wild type p53 is required for radiation induced apoptosis. The p53 status, therefore, may be a crucial determinant of radiosensitivity of tumor cells. Overexpression of Bcl2, however, inhibits apoptosis via hetero- and homodimeric interaction. Bax might function as a cell death effector molecule that is neutralized by Bcl2. The aim of the present study is to investigate the correlation between p53, Bcl2, Bax and c-myc levels and the clinical response of head and neck cancer patients to radiation. The base line and 30 GY gamma radiation induced values of p53, Bcl2, Bax and c-myc were estimated by Western blot in 40 biopsies of head and neck cancers. We found that the radiosensitivity of head and neck cancer patients depends on the ratio of p53, Bcl2 and Bax protein levels. High Bcl2 levels resulted in radioresistance of cancer patients. Overexpression of Bax and c-myc may ensure the radiosensitivity of head and neck cancer patients. Our studies indicate that prediction of radiation sensitivity of tumors could be based on the simultaneous evaluation of p53, Bax and Bcl2 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Begg AC: Prediction of repopulation rates and radiosensitivity in human tumours. Int J Radiat Biol 64:103–108, 1994.

    Article  Google Scholar 

  2. Biard DSF, Martin M, Rhun LY, et al: Concomitant p53 gene mutation and increased radiosensitivity in rat lung embryo epithelial cells during neoplastic development. Cancer Res 54:3361–3364, 1994.

    PubMed  CAS  Google Scholar 

  3. Brachman DG, Beckett M, Graves D: p53 mutation does not correlate with radiosensitivity in 24 head and neck carcinoma cell lines. Cancer Res 53:3667–3669, 1993.

    PubMed  CAS  Google Scholar 

  4. Campos L, Rouault J, Sabido O, et al: High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81:3091–3096. 1993.

    PubMed  CAS  Google Scholar 

  5. Clarke AR, Purdie CA, Harrison DJ, et al: Thymocyte apoptosis induced by p53 dependent and independent pathways. Nature 362:849–852, 1993.

    Article  PubMed  CAS  Google Scholar 

  6. Chen YT, Xu L, Masseg L, et al: Frameshift and nonsense p53 mutation in squamous cell carcinoma of head and neck - non -reactivity with three anti p53 monoclonal antibodies. Int J Oncol 4:609–614, 1994.

    CAS  Google Scholar 

  7. Cox LS and Lane DP: Tumour suppressors, kinases and clamps: how p53 regulates the cell cycle in response to DNA damage. BioEssays 17:501–508, 1995.

    Article  PubMed  CAS  Google Scholar 

  8. El-Deiry WS, Tokino T, Velculescu VE, et al: WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825, 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Evan GI, Wyllie AH, Gilbert CS, et al: Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Fanidi A, Harrington EA, Evan GI: Interaction between c-myc and bcl-2 protooncogens: a novel paradigm for oncogene cooperation. Nature 359:554–556, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Harper JW, Adami GR, Wei N, et al: The p21 Cdk-interacting protein Cip 1 is a potent inhibitor of GI cyclin-dependent kinases. Cell 75:805–816, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Hockenbery D, Nuniez G, Milliman C, et al: Bcl2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Hoffman B, Liebermann DA: Molecular controls of apoptosis: differentiation/growth arrest primary response genes, protooncogenes, and tumor suppressor genes as positive and negative modulators. Oncogene 9:1807–1812, 1994.

    PubMed  CAS  Google Scholar 

  14. Kastan MB, Onyekwere O, Sidransky D, et al: Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6312, 1991.

    PubMed  CAS  Google Scholar 

  15. Kastan MB, Zhan Q, El-Deiry WS: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-teleangiectasia. Cell 71:587–597, 1992.

    Article  PubMed  CAS  Google Scholar 

  16. Kerr JE, Winterford CM, Harmon BV: Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Lane DP: p53, guardian of the genome. Nature (Lond.) 358:15–16, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Lee JM, Bernstein A: p53 mutations increase resistance to ionizing radiation. Proc Natl Acad. Sci USA 90:5742–5746, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Lowe SW, Ruley HE, Jacks T, Housman DE: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967, 1993.

    Article  PubMed  CAS  Google Scholar 

  20. Lowe SW, Bodis S, McClatchey A, et al: p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Mclwrath AJ, Vasey PA, Ross GM, Brown R: Cell cycle arrests and radiosensitivity of human tumor cell lines: Dependence on wild-type p53 for radiosensitivity. Cancer Res 54:3718–3722, 1994.

    Google Scholar 

  22. Miyashita T, Harigai M, Krajewski S, et al: Tumor suppressor p53 is a regulator of bcl2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805, 1994.

    PubMed  CAS  Google Scholar 

  23. Miyashita T, Krajewski S, Krajewska M, et al: Tumor suppressor p53 is a regulator of bcl2 and bax gene expression in vitro and in vivo. Oncogene 6:1796–1805, 1994.

    Google Scholar 

  24. Miyashita T and Reed JC: Bcl2 oncoprotein blocks chemotherapy-induced apoptosis in human leukemia cell line. Blood 81:151–157, 1993.

    PubMed  CAS  Google Scholar 

  25. Miyashita T, Reed JC: Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299, 1995.

    Article  PubMed  CAS  Google Scholar 

  26. Oltvai ZN, Milliman CL and Korsmeyer SJ: Bcl2 heterodimerizes in vivo with a conserved homolog Bax, that accelerats programmed cell death. Cell 74:609–619, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Powell SN, De Frank JS, Connell P, et al: Differential sensitivity of p53 - and p53+ cells to caffeine - induced radiosensitization and overside of G2 delay. Cancer Res 55:1643–1648, 1995.

    PubMed  CAS  Google Scholar 

  28. Perego P, Giarola M, Righetti SC: Association between cisplatin resistance and mutation of p53 gene and reduced Bax expression in ovarian carcinoma cell systems. Cancer Res 56:556–562, 1996.

    PubMed  CAS  Google Scholar 

  29. Reed JC: Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124:1–6, 1994.

    Article  PubMed  CAS  Google Scholar 

  30. Rubio MP, Von Deimling A, Yandell DW, et al: Accumulation of wild type p53 protein in human astrocytomas Cancer. Res. 53: 3465–3467, 1993.

    CAS  Google Scholar 

  31. Scholl AF, Apel IJ, Nunez G and Clarke MF: BclXL protects cancer cells from p53-mediated apoptosis. Oncogene 11:1380–1394, 1995.

    Google Scholar 

  32. Shibamoto Y, Shibata T, Miyatake S, et al: Assessment of the proliferative activity and radiosensitivity of human tumours using the cytokinesis-block micronucleus assay. Br. J. Cancer 70:67–71, 1994.

    PubMed  CAS  Google Scholar 

  33. Shimamura A, Fisher DE: P53 in life and death. Clin Cancer Res 2: 435–440, 1996.

    PubMed  CAS  Google Scholar 

  34. Slichenmyer WJ, Nelso WG, Slebos RI, and Kastan MB: Loss of p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res 53:4164–4168, 1993.

    PubMed  CAS  Google Scholar 

  35. Stewart BW:Mechanisms of apoptosis: Integration of genetic, biochemical and cellular indicators. J Natl Cancer Inst 86:1286–1296, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. Sumantran VN, Ealovega MW, Nunez G, et al: Overexpression of BclXs senzitizes MCF-7 cells to chemotherapy induced apoptosis. Cancer Research 55:2507–2510, 1995.

    PubMed  CAS  Google Scholar 

  37. Tan LKS and Ogden GR: P53 over-expression in laryngeal carcinoma is not predictive of response to radiotherapy. Oral Oncology 33:177–181, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Ueba T, Nosaka T, Takahashi JA, et al: Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc. Natl. Acad. Sci. USA 91:9009–9013, 1994.

    Article  PubMed  CAS  Google Scholar 

  39. Wilson GD, Richman PI, Dische S, et al: P53 status of head and neck cancer, relation to biological characteristics and outcome of radiotherapy. Brit J Cancer 71:1248–1252, 1995.

    PubMed  CAS  Google Scholar 

  40. Zastawny RL, Salvino R, Chin J, et al: The core promoter region of the P-glycoprotein gene is sufficient to confer differential responsiveness to wild-type and mutant p53. Oncogene 8:1529–1535, 1993.

    PubMed  CAS  Google Scholar 

  41. Zhang Q, Fan S, Bae I, et al: Induction of Bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene 9:3743–3751, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csuka, O., RemenÁr, É., Koronczay, K. et al. Predictive value of p53, Bcl2 and bax in the radiotherapy of head and neck cancer. Pathol. Oncol. Res. 3, 204–210 (1997). https://doi.org/10.1007/BF02899922

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899922

Key words

Navigation