Skip to main content
Log in

Pancreatic cell proliferation in normal rats studied by in vivo autoradiography with3H-Thymidine

  • Published:
Virchows Archiv B

Summary

In vivo3H-Thymidine autoradiographic investigations of DNA synthesis in acinar, islet and duct cells in the pancreas of normal rats showed that activity was dependent on age. The proliferation of acinar and islet cells, which was high in young animals, decreased exponentially with age; proliferation of the ductal cells on the other hand, increased until the animals became mature. These findings suggest that the physiological regeneration of acinar and islet cells, as well as their replacement after injury in adult animals commences from pancreatic ducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bani D, Bani Sacchi T (1985a) The intermediate cells of the rat pancreas in normal conditions and following portocaval shunt. Z mikrosk-anat Forsch 99:353–361

    PubMed  CAS  Google Scholar 

  • Bani D, Bani Sacchi T, Billiotti G (1985b) Nesidioblastosis and intermediate cells in the pancreas of patients with hyperinsulinaemic hypoglycaemia. Virchows Arch [B] 48:19–32

    CAS  Google Scholar 

  • Bani D, Bani Sacchi T, Billiotti G (1985c) Nesidioblastosis and islet cell changes related to endogenous hypergastrinaemia. Virchows Arch [B] 48:261–276

    Google Scholar 

  • Blum B (1963) see- Hellerström G (1977) Growth pattern of pancreatic islets in animals. In: Volk BW, Wellman KF (eds) The diabetic pancreas. Plenum Press, New York, pp 70–97

    Google Scholar 

  • Chick WL, Boston MD (1973) Bet-cell replication in pancreatic monolayer cultures. Diabetes 22:687–693

    PubMed  CAS  Google Scholar 

  • Chick WL (1973) Effects of glucose on Beta-cells in pancreatic monolayer cultures. Endocrinology 92:212–218

    PubMed  CAS  Google Scholar 

  • Cossel L (1984) Intermediate cells in the adult human pancreas. Virchows Arch [B] 47:313–328

    Article  CAS  Google Scholar 

  • Cossel L (1986) Electron microskopic demonstration of intermediate cells in the healthy human pancreas. Virchows Arch [B] 52:283–287

    CAS  Google Scholar 

  • Cossel L (1987) Intermediärzellen im Pankreas und zelluläre Transformation. Zentralbl Allg Pathol 133:503–516

    PubMed  CAS  Google Scholar 

  • De Clercq L (1980) Nuclear events in Beta-Cells of young and senescent rat islets in organ cultures. Cell Biol Int Rep 4:817–826

    Article  PubMed  Google Scholar 

  • Dore BA, Mc Lean GW, Madge GE, Webb SR (1981) Biphasic development of the postnatal mouse pancreas. Biol Neonate 40:209–217

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald PJ, Vinijchaikul K, Carol B, Rosenstock L (1986) Pancreas acinar cell regeneration III. DNA-synthesis of pancreas nuclei as indicated by3H-Thymidine autoradiography. Am J Pathol 52:1039–1065

    Google Scholar 

  • Hellerström C (1977) Growth pattern of pancreasic islets in animals. In: Volk BW, Wellman KF (eds) The diabetic pancreas. Plenum Publishing Corperation. New York, pp 61–97

    Google Scholar 

  • Hellerström C (1984) The life story of the pancreatic Beta-cell. Diabetologia 26:393–400

    Article  PubMed  Google Scholar 

  • Hellerström C, Swenne I (1985) Growth pattern of the islet organ. In: Volk BW, Aquilla ER (eds) The diabetic pancreas. Plenum Medical Bock Company, New York London, pp 53–79

    Google Scholar 

  • Kern HF, Kern D (1968) Symposium der Deutschen Gesellschaft für Endokrinologie. 14:186–196

    Google Scholar 

  • Kern HF, Logothetopoulos J (1970) Steroid diabetes in the guinea pig. Studies on islet-cell ultrastructure and regeneration. Diabetes 19:145–154

    PubMed  CAS  Google Scholar 

  • Klöppel G (1981) Endokrines Pankreas und Diabetes. In: Doerr W, Seiffert G (eds) Pathologie der endokrinen Organe. Bd. 11 /I. Springer Berlin Heidelberg New York, pp 523–728

    Google Scholar 

  • Klöppel G (1983) Immunocytochemical morphometry of the endocrine pancreas in obese and non obese type II (non insuline dependent) diabetic patients. Diabetologia 25:171–179

    Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one criterion variance analysis. J Am Statist Assoc 47:614–617

    Article  Google Scholar 

  • Lazarus SS (1959) Pancreatic adaptation to diabetogenic hormones. Arch Pathol 67:456–467

    CAS  Google Scholar 

  • Like AA, Chick WL (1970) Studies on the diabetic mutant mouse. I. Light microscopy and radioautography of pancreatic islets. Diabetologia 6:207–215

    Article  PubMed  CAS  Google Scholar 

  • Logothetopoulos J (1972) Islet cell regeneration and neogenesis. In: Handbook of physiology, vol. 1, sect. 7. Am Physiol Soc Washington, pp 67–76

  • Lucke S, Ziegler B, Komolow I, Hahn HJ (1976) Beziehung zwischen Markierungsindex und Thymidineinbau in kultivierten Langerhansschen Inseln der Ratte. Stimulation der DNSSynthese durch FGH-S3. Acta Histochem 79:33–41

    Google Scholar 

  • Lütcke H, Scheele GA, Kern HF (1987) Time course and cellular site of mitotic activity in the endocrine pancreas of the rat during susstained hormone stimulation. Cell Tiss Res 247:385–391

    Article  Google Scholar 

  • McEvoy RC (1981) Changes in the A-, B-, and D-cell population in the pancreatic islet during the postnatal development of the rat. Diabetes 30:813–817

    Article  PubMed  CAS  Google Scholar 

  • Oates PS, Morgan RGH (1986) Changes in pancreatic acinar cell nuclear and DNA content during aging in the rat. Am J Anat 177:547–554

    Article  PubMed  CAS  Google Scholar 

  • Rogers AW (1979) Techniques of Autoradiography. Elsevier North Holland Biomedical Press, Amsterdam New York Oxford

    Google Scholar 

  • Schultze B (1969) Autoradiographie. Physikalische Methoden in der Biologie. Bd. III, Academic Press, New York

    Google Scholar 

  • Swenne I (1982) The role of glucose in the in vitro regulation of cell cycle kinetics and proliferation of fetal pancreatic B-cells. Diabetes 31:754–760

    PubMed  CAS  Google Scholar 

  • Swenne I (1983) Effects of aging on the regenerative capacity of the pancreatic B-cell of the rat. Diabetes 32:14–19

    Article  PubMed  CAS  Google Scholar 

  • Tsubouchi S, Kano E, Suzuki H (1987) Demonstration of expanding cell populations in mouse pancreatic acini and islets. Anat Rec 218:111–115

    Article  PubMed  CAS  Google Scholar 

  • Warrens S, Root HF (1925) The pathology of diabets with special reference to pancreatic regeneration. Am J Pathol 1:415–429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study is part of the research project HFR 22 and was supported by the Health Departement of the GDR

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, R., Laucke, R., Trimper, B. et al. Pancreatic cell proliferation in normal rats studied by in vivo autoradiography with3H-Thymidine. Virchows Archiv B Cell Pathol 59, 133–136 (1990). https://doi.org/10.1007/BF02899397

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899397

Key words

Navigation