Skip to main content
Log in

Age-related changes in the sympathetic innervation of the pancreas

  • Mechanisms of Normal and Pathological Development of Tissues
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Using immunohistochemical methods, the morphological features of the sympathetic nerve structures in the pancreas of newborn, pubescent, and aging rats have been studied. The neural composition of intramural ganglia has been described. The intramural ganglia were shown to include chromaffin cells. In many ganglia of the pancreas, two types of pericellular nerve apparatuses have been detected simultaneously: tyrosine hydroxylase-containing catecholaminergic synaptic terminals and PGP 9.5-immunopositive cholinergic synapses. It was established that the density of catecholaminergic structures in the pancreas of rats decreases with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrén, B, Autonomic regulation of islet hormone secretion-implications for health and disease, Diabetologia, 2000, vol. 43, no. 4, pp. 393–410.

    Article  PubMed  Google Scholar 

  • Borden, P., Houtz, J., Leach, S.D., and Kuruvilla, R, Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation, Cell Rep., 2013, vol. 4, no. 2, pp. 287–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burris, R.E. and Hebrok, M, Pancreatic innervation in mouse development and beta-cell regeneration, Neuroscience, 2007, vol. 150, no. 3, pp. 592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera-Vázquez, S.C., Navarro-Tablers, V., Sanchez-Solo, C., et al., Remodelling sympathetic innervation in rat pancreatic islets ontogeny, BMC Dev. Biol., 2009, vol. 9, no. 1, pp. 34–41.

    Article  Google Scholar 

  • Chumasov, E.I., Petrova, E.S., and Korzhevskii, D.E, Distribution and structural organization of autonomic neural apparatus of the rat pancreas (an immunohistochemical study), Morfologiya, 2011, vol. 139, no. 3, pp. 51–58.

    CAS  Google Scholar 

  • Chumasov, E.I., Maistrenko, N.A., Petrova, E.S., et al., Morphological study of the pancreas in chronic pancreatitis using immunohistochemical markers, Med. Akad. Zh., 2013, vol. 13, no. 2, pp. 71–77.

    Google Scholar 

  • Chumasov, E.I., Petrova, E.S., and Korzhevskii, D.E, Changes in the pancreatic islets and nervous elements in rats during aging (an immunohistochemical study), Morfologiya, 2015, vol. 148, no. 6, pp. 64–69.

    Google Scholar 

  • Chumasov, E.I., Alekseenko, A.L., Petrova, E.S., and Korzhevskii, D.E, The study of nerve apparatuses of the heart and pericardial area of a neonatal rat using immunohistochemical markers, Zh. Mezhd. Vestn. Vet., 2016, no. 3, pp. 84–88.

    Google Scholar 

  • Coupland, R.E, The innervation of pancreas of the rat, cat and rabbit as revealed by the cholinesterase technique, J. Anat., 1958, vol. 92, no. 1, pp. 143–149.

    CAS  PubMed  Google Scholar 

  • Edwards, R.H., Rutter, W.J., and Hanahan, D, Directed expression of NGF to pancreatic beta cells in transgenic mice leads to selective hyperinnervation of the islets, Cell, 1989, vol. 58, no. 1, pp. 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Eletskii, Yu.K. and Shashirina, M.I, Morphofunctional state of the cholinergic innervation of the rat pancreas after vagotomy, Byul. Eksp. Biol., 1976, vol. 81, no. 4, pp. 492–494.

    Article  Google Scholar 

  • Falck, B. and Hellman, B., A fluorescent reaction for monoamines in the insulin producing cells of the guinea-pig, Acta Endocrinol. (Copenh.), 1964, vol. 45, no. 1, pp. 133–138.

    CAS  Google Scholar 

  • Gilon, P. and Henquin, J.C, Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function, Endocrine Rev., 2001, vol. 22, no. 5, pp. 565–604.

    CAS  Google Scholar 

  • Glebova, N.O. and Ginty, D.D, Growth and survival signals controlling sympathetic nervous system development, Annu Rev. Neurosci., 2005, vol. 28, pp. 191–222.

    Article  CAS  PubMed  Google Scholar 

  • Gradwohl, G., Dierich, A., LeMeur, M., and Guillemot, F, Neurogenin 3 is required for the development of the four endocrine cell lineages of the pancreas, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 4, pp. 1607–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn von Dorsche, H. and Falkmer, S, Ontogeny of human Langergans islets. A review of some light- and electron-microscopical, immunohistochemical and functional data on fetal development of the endocrine pancreas, J. Evol. Biochem. Physiol., 2000, vol. 36, no. 6, pp. 701–718.

    Google Scholar 

  • Ivanova, V.F. and Puzyrev, A.A., Gastroenteropancreatic endocrine system, in Rukovodstvo po gistologii (Manual in Histology), Danilov, R.K., Ed., 2nd ed. (revised and enlarged), St. Petersburg: SpetsLit, 2014.

    Google Scholar 

  • Kolos, E.A., Grigor’ev, I.P., and Korzhevskii, D.E, Marker of synaptic contacts synaptophysin, Morfologiya, 2015, vol. 147, no. 1, pp. 78–82.

    Google Scholar 

  • Korzhevskii, D.E. and Kolos, E.A., PGP 9.5 protein and its use as a functional marker in neuromorphology, Med. Akad. Zh., 2013, vol. 13, no. 4, pp. 29–35.

    Google Scholar 

  • Korzhevskii, D.E., Sukhorukova, E.G., Gilerovich, E.G., et al., Advantages and disadvantages of zinc–ethanol–formaldehyde as a fixative for immunocytochemical studies and confocal laser microscopy, Neurosci. Behav. Physiol., 2014, vol. 44, no. 5, pp. 542–545.

    Article  CAS  Google Scholar 

  • Korzhevskii, D.E., Kirik, O.V., Petrova, E.S., et al., Teoreticheskie osnovy i prakticheskoe primenenie metodov immunogistokhimii (rukovodstvo) (Theoretical Basics and Practical Application of Immunohistochemical Techniques (Manual)), St. Petersburg: SpetsLit, 2014.

    Google Scholar 

  • Krivova, Yu.S., Proshchina, A.E., Chernikov, V.P., et al., Immunohistochemical Analysis and Electron Microscopy of Glial Cells in the Pancreas of Fetuses and Children, Bull. Exp. Biol. Med., 2015, vol. 159, no. 5, pp. 666–669.

    Article  CAS  PubMed  Google Scholar 

  • Lammert, E., Cleaver, O., and Melton, D, Induction of pancreatic differentiation by signals from blood vessels, Science, 2001, vol. 294, no. 5542, pp. 564–567.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M.T. and Kirchgessner, A.L, Guinea pig pancreatic neurons: morphology, neurochemistry, electrical properties, and response to 5-HT, Am. J. Physiol., 1997, vol. 273, no. 1, pp. 1273–1289.

    Google Scholar 

  • Liu, H.P., Tay, S.S., and Leong, S.K, An ultrastructural study of the innervation of the guinea pig pancreas, J. Hirnforsch., 1997, vol. 38, no. 1, pp. 107–117.

    CAS  PubMed  Google Scholar 

  • Maistrenko, N.A., Chumasov, E.I., Dovganyuk, V.S., et al., Features of chronic pancreatitis pathomorphism in the justification of surgical approaches, Vestn. Khir. im. I.I. Grekova, 2013, vol. 172, no. 4, pp. 29–39.

    CAS  Google Scholar 

  • Mei, Q., Mundinger, T.O., Lemmark, A., and Taborsky, G.J, Early,selective,and marked loss of sympathetic nerves from the islets of BioBreeder diabetic rats, Diabetes, 2002, vol. 51, no. 10, pp. 2997–3002.

    Article  CAS  PubMed  Google Scholar 

  • Nozdrachev, A.D., Fiziologiya vegetativnoi nervnoi sistemy (Physiology of the Autonomic Nervous System), Leningrad: Meditsina, 1983.

    Google Scholar 

  • Nozdrachev, A.D. and Chumasov, E.I., Perifericheskaya nervnaya sistema (The Peripheral Nervous System), St. Petersburg: Nauka, 1990.

    Google Scholar 

  • Oomori, Y., Luchi, H., Ishikawa, K., et al., Immunocytochemical study of tyrosine hydroxylase and dopamine beta-hydroxylase immunoreactivities in the rat pancreas, Histochemistry, 1994, vol. 101, no. 3, pp. 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Persson-Sjögren, S., Zashihin, A., and Forsgren, S, Nerve cells associated with the endocrine pancreas in young mice: an ultrastructural analysis of the neuroinsular complex type I, Histochem. J., 2001, vol. 33, no. 6, pp. 373–378.

    Article  PubMed  Google Scholar 

  • Persson-Sjögren, S., Holmberg, D., and Forsgren, S, Remodeling of the innervation of pancreatic islets accompanies insulitis preceding onset of diabetes in the NOD mouse, J. Neuroimmunol., 2005, vol. 158, nos. 1–2, pp. 128–137.

    Article  PubMed  Google Scholar 

  • Proshchina, A.E., Krivova, Y.S., Barabanov, V.M., and Saveliev, S.V, Ontogeny of neuro-insular complexes and islets innervation in the human pancreas, Front. Endocrinol. (Lausanne), 2014, vol. 5, no. 57, pp. 1–8.

    Google Scholar 

  • Salvioli, B., Bovara, M., Barbara, G., et al., Neurology and neuropathology of the pancreatic innervations, J. Pancreas (Online), 2002, vol. 3, no. 2, pp. 26–33.

    Google Scholar 

  • Sharkey, K.A. and Williams, R.G, Extrinsic innervation of the rat pancreas: demonstration of vagal sensory neurones in the rat by retrograde tracing, Neurosci. Lett., 1983, vol. 42, no. 2, pp. 131–135.

    Article  CAS  PubMed  Google Scholar 

  • Smitten, N.A., Simpato-adrenalovaya sistema v filo-i ontogeneze pozvonochnykh (Sympathetic–Adrenal System in the Phylogeny and Ontogeny of Vertebrates), Moscow: Nauka, 1972.

    Google Scholar 

  • Taborsky, G.J, Islets have a lot of nerve! Or do they?, Cell Metab., 2011, vol. 14, no. 1, pp. 5–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teitelman, G. and Lee, J.K, Cell lineage analysis of pancreatic islet development: glucagon and insulin cells arise from catecholaminergic precursors present in the pancreatic duct, Dev. Biol., 1987, vol. 121, no. 2, pp. 454–466.

    Article  CAS  PubMed  Google Scholar 

  • Ushiki, T. and Watanabe, S, Distribution and ultrastructure of the autonomic nerves in the mouse pancreas, Microsc. Res. Tech., 1997, vol. 37, nos. 5–6, pp. 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Winer, S., Tsui, H., Song, A., et al., Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive, Nat. Med., 2003, vol. 9, no. 2, pp. 198–205.

    Article  CAS  PubMed  Google Scholar 

  • Woods, S.C. and Porte, D, Neural control of the endocrine pancreas, Physiol. Rev., 1974, vol. 54, no. 3, pp. 596–619.

    CAS  PubMed  Google Scholar 

  • Yi, E., Smith, T.G., and Love, J.A, Noradrenergic innervations of rabbit pancreatic ganglia, Auton. Neurosci., 2005, vol. 117, no. 2, pp. 87–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Chumasov.

Additional information

Original Russian Text © E.I. Chumasov, E.S. Petrova, D.E. Korzhevskii, 2017, published in Ontogenez, 2017, Vol. 48, No. 4, pp. 325–334.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumasov, E.I., Petrova, E.S. & Korzhevskii, D.E. Age-related changes in the sympathetic innervation of the pancreas. Russ J Dev Biol 48, 278–286 (2017). https://doi.org/10.1134/S1062360417040038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360417040038

Keywords

Navigation