Skip to main content
Log in

Primary cultures of corticostriatal cells from newborn rats: A model to study muscarinic receptor subtypes regulation and function

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In the present work we characterized both the presynaptic and postsynaptic components of cholinergic transmission in a primary culture of corticostriatal neurons prepared from newborn rat brain. This culture preparation contains a small population of choline acetyltransferase (ChAT) immunoreactive neurons, corresponding to approximately 3% of the total cell number, and synthesizes increasing amounts of acetylcholine (ACh) from the third day in vitro (DIV), which reaches a plateau around the 10 day of culture. Muscarinic cholinergic receptors (mAChR), measured by the binding of the muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB), are detectable from the fifth DIV and increase linearly during the time of culture. At the twelfth DIV, the density of mAChRs (approximately 600 fmol/mg protein) is comparable to the density of mAChR in adult rat cortex. These receptors are coupled to second messenger systems, since muscarinic agonists inhibit adenylate cyclase activity and stimulate phosphoinositide breakdown with efficacies and potencies similar to those found in adult rat cortex. Moreover, by using the reverse transcriptase-polymerase chain reaction (RT-PCR) technique, we were able to demonstrate the presence of the m1, m3, and m4 mAChR subtype mRNAs in this neuronal culture at 12 DIV. Our data suggest that corticostriatal neuronal cultures develop in vitro ACh-synthesizing neurons and functionally active cholinergic receptors. This therefore makes them ideally suited to study the development and properties of brain mAChR subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alho, H., Ferrarese, C., Vicini, S., Vaccarino, F.M. (1988). Subsets of GABAergic neurons in dissociated cell cultures of neonatal rat cerebral cortex show colocalization with specific modulatory peptides. Dev. Brain Res. 39:193–204

    Article  CAS  Google Scholar 

  • Berridge, M.J., Downes, C.P., Hanley, M.R. (1982). Lithium amplifies agonist-dependent phosphatidil inositol responses in brain and salivary glands. Biochem. J. 206:587–595

    PubMed  CAS  Google Scholar 

  • Bertolino, M., Vicini, S., Mazzetta, J., Costa, E. (1988). Phencyclidine and glycine modulate NMDA-activated high conductance cationic channels by acting at different sites. Neurosci. Lett. 84:351–355

    Article  PubMed  CAS  Google Scholar 

  • Birdsall, N.J.M., Burgen, A.S.V., Hulme, E.C. (1978). The binding of agonists to brain muscarinic receptors. Mol. Pharmacol. 14:723–736

    PubMed  CAS  Google Scholar 

  • Bonner, T.I. (1989). The molecuar basis of muscarinic receptors diversity. Trends Neurosci 12(4):148–151

    Article  PubMed  CAS  Google Scholar 

  • Bonner, T.J., Buckley, N.J., Young, A.C., Brann, M.R. (1987). Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532

    Article  PubMed  CAS  Google Scholar 

  • Bonner, T.I., Young, A.C., Brann, M.R., Buckley, N.J. (1988). Cloning and expression of the human and rat m5 muscarinic receptor genes. Neuron 1:403–410

    Article  PubMed  CAS  Google Scholar 

  • Buckley, N.J., Bonner, T.I., Brann, M.R. (1988). Localization of a family of muscarinic receptor mRNAs in rat brain. J. Neurosci 8(12):4646–4652

    PubMed  CAS  Google Scholar 

  • Candy, J.M., Perry, E.K., Perry, R.H., Bloxham, C.A., Thompson, J., Oakley, A.E., Edwardson, J.A. (1985). Evidence for the earlier prenatal development of cortical cholinergic afferents from the nucleus of Meynert in the human foetus. Neurosci. Lett. 61:91–95

    Article  PubMed  CAS  Google Scholar 

  • Chirgwin, J.M., Przybyla, R.J., Macdonald, R.J., Rutter, W.J. (1979). Isolation of biologically active ribonucleic acid from soures enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T., Yamamura, H.I. (1976). Neurochemical aspect of the ontogenesis of cholinergic neurons in the rat brain. Brain Res. 118:429–440

    Article  PubMed  CAS  Google Scholar 

  • Eva, C., Hadjiconstantinou, M., Neff, N.H., Meek, J.L. (1984). Acetylcholine measurement by high-performance liquid chromatography using an enzyme-loaded postcolumn reactor. Anal. Biochem. 143:390–394

    Article  Google Scholar 

  • Fukuda, K., Higashida, H., Kubo, T., Maeda, A., Akida, I., Bujo, H., Mishina, M., Numa, S. (1988). Selective coupling with K+ currents of muscarinic acetylcholine receptor subtypes in NG108-15 cells. Nature 335:355–357

    Article  PubMed  CAS  Google Scholar 

  • Ganong, W.F. (1975). The role of catecholamines and acetylcholine in the regulation of endocrine function. Life Sci 15:1401–1414

    Article  Google Scholar 

  • Goyal, R.K., Rattan, S. (1978). Neurohumoral, hormonal, and drug receptors for the lower esophageal sphincter. Gastroenterology 74:598–619

    PubMed  CAS  Google Scholar 

  • Grawford, G.H., Correa, L., Salvaterra, P.M. (1982). Interaction of monoclonal antibodies with mammalian choline acetyltransferase. Proc. Natl. Acad. Sci. U.S.A. 79:7031–7035

    Article  Google Scholar 

  • Hammer, R., Berrie, C.P., Birdsall, N.J.M., Burgen, A.S.V., Hulme, E.C. (1980). Pirenzepine distinguishes between different subclasses of muscarinic receptor. Nature 283:90–92

    Article  PubMed  CAS  Google Scholar 

  • Harden, T.K., Tanner, L.I., Martin, M.W., Nakahata, N., Hughes, A.R., Hepler, J.R., Evans, T., Masters, S.B., Brown, J.H. (1986). Characteristics of two biochemical responses to stimulation of muscarinic cholinergic receptors. Trends Pharmacol. Sci., Suppl. 7:14–18

    Google Scholar 

  • Itil, T., Fink, M. (1968). EEG and behavioral aspects of the interaction of anticholinergic hallucinogens and centrally active compound. Prog. Brain Res. 28:149–168

    Article  PubMed  CAS  Google Scholar 

  • Jones, P.S.V., Barker, J.L., Buckley, N.J., Bonner, T.I., Collins, R.M., Brann, M.R. (1988). Cloned muscarinic receptor subtypes expressed in A9 L cells differ in their coupling to electrical responses. Mol. Pharmacol. 34:421–426

    PubMed  CAS  Google Scholar 

  • Jones, P.S.V., Murphy, T.J., Brann, M.R. (1989). Physiological comparison of cloned muscarinic receptors subtypes expressed in CHO cells. Trends Pharmacol. Sci., December Suppl., 72

  • Klawans, H.L. (1970). A pharmacologic analysis of Huntington’s chorea. Eur. Neurol. 4:148–163

    Article  PubMed  Google Scholar 

  • Kubo, T., Maeda, A., Sugimoto, K., Akiba, I., Mikami, A., Takahashi, H., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Matsuo, H., Mishina, M., Hirose, T., Numa, S. (1986). Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS Lett. 209:367–372

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M.J., Birdsall, N.J.M., Burgen, A.S.V., Hulme, E.C. (1980). Ontogeny of muscarinic receptor in rat brain. Brain Res. 184:375–383

    Article  PubMed  CAS  Google Scholar 

  • Lai, J., Mei, L., Roeske, W.R., Chung, F.-Z., Yamamura, H.I., Venter, C.J. (1988). The cloned murine M1 muscarinic receptor is associated with the hydrolysis of phosphatidylinositols in transfected murine B82 cells. Life Sci. 422:2489–2502

    Article  Google Scholar 

  • Levi, G., Aloisi, F., Ciolti, M.T., and Gallo, V. (1984). Autoradiographic localization and depolarization-induced release of acidic aminoacids in differentiating cerebellar granule cell cultures. Brain Res. 290:77–86

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E.F., Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 211–212

    Google Scholar 

  • Meek, J.L., Eva, C. (1984). Enzye adsorbed on an ion exchanger as a post-column reactor: application to acetylcholine measurement. J. Chromatog. 317:343–347

    Article  CAS  Google Scholar 

  • Nadler, J.V., Mathews, D.A., Cotman, C.W., Lynch, G.S. (1974). Development of cholinergic innervation in the hippocampal formation of the rat. Dev. Biol. 36:142–154

    Article  PubMed  CAS  Google Scholar 

  • Nathanson, N.M. (1987). Molecular propertes of the muscarinic acetylcholine receptor. Annu. Rev. Neurosci 10:195–236

    Article  PubMed  CAS  Google Scholar 

  • Olianas, M.C., Onali, P., Neff, N.H., Costa, E. (1983a). Adenylate cyclase activity of synaptic membranes from rat striatum. Inhibition by muscarinic receptor agonists. Mol. Pharmacol. 23:393–398

    PubMed  CAS  Google Scholar 

  • Olianas, M.C., Onali, P., Neff, N.H., Costa, E. (1983b). Muscarinic receptors modulate dopamine-activated adenylate cyclase from rat striatum. J. Neurochem. 411:364–369

    Google Scholar 

  • Peralta, E.G., Ashkenazi, A., Winslow, J.W., Smith, D.H., Ramachandran, J., Capon, D.J. (1987). Distinct primary structures, ligand binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J. 6(13):3923–3929

    PubMed  CAS  Google Scholar 

  • Peralta, E.G., Ashkenazi, A., Winslow, J.W., Ramachandran, J., Capon, D.J. (1988). Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334:434–437

    Article  PubMed  CAS  Google Scholar 

  • Rappolee, D.A., Brenner, C.A., Shultz, R., Mark, D., Werb, Z. (1988). Developmental expression of PDGF, TGF-α, and TGF-β genes preimplantation mouse embryos. Science 241:1823–1825

    Article  PubMed  CAS  Google Scholar 

  • Roth, M.E., Lacy, M.J., McNeil, L.K., Kranz, D.M. (1988). Selection of variable-joining region combinations in the α chain of the T cell receptor. Science 241:1354–1358

    Article  PubMed  CAS  Google Scholar 

  • Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 230:487–491

    Article  Google Scholar 

  • Salomon, Y., Londos, D., Rodbell, M. (1974). A highly sensitive adenylate cyclase assay. Anal. Biochem. 58:541–548

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, L.A. (1979). Immunohistochemistry, 2nd ed., Wiley, New York, pp 104–169

    Google Scholar 

  • Vaca, K. (1988). The development of cholinergic neurons. Brain Res. Rev. 13:261–286

    Article  CAS  Google Scholar 

  • Vicini, S., Alho, H., Costa, E., Mienville, J.M., Santi, M.R., Vaccarino, F.M. (1987). Modulation of aminobutyric acid (GABA) mediated inhibitory synaptic currents in dissociated cortical cell cultures. Proc. Natl. Acad. Sci. U.S.A.

  • Wang, A.M., Doyle, M.V., Mark, D.F. (1989). Quantitation of mRNA by the polymerase chain reaction. Proc. Natl. Acad. Sci. U.S.A. 86:9717–9721

    Article  PubMed  CAS  Google Scholar 

  • Weiner, D.M., Brann, M.R. (1989). Distribution of m1–m5 muscarinic receptor mRNAs in rat brain. Trends Pharmacol. Sci., December Suppl. 67

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eva, C., Bovolin, P., Balzac, F. et al. Primary cultures of corticostriatal cells from newborn rats: A model to study muscarinic receptor subtypes regulation and function. J Mol Neurosci 2, 143 (1990). https://doi.org/10.1007/BF02896839

Download citation

  • DOI: https://doi.org/10.1007/BF02896839

Keywords

Navigation