Skip to main content
Log in

Genomics of prostate cancer: Is there anything to „translate”?

  • Review
  • Published:
Pathology & Oncology Research

Abstract

This review provides an up-dated collection of data concerning the genetic and epigenetic changes during development, growth and progression of prostate cancer. Hereditary and susceptibility factors have a long list, similarly to the expression of single genes connected to various cell functions. It was a hope that covering a large set of genes, array technologies would clarify very rapidly the role of genetics in malignant diseases, offering targets for molecular diagnostics and therapy. The power of high-throughput techniques for the detection and global analysis of gene expression is unquestionable, interesting, astonishing as well as puzzling data have already been obtained. However, the standardization of the procedures is still missing and the reproducibility is rather low in many instances. Moreover, the different array methods can select different gene expression profiles, which makes the decision rather difficult. Another important question is, coming again from the array technologies, how far the genotype (the gene profiles or fingerprints) can reflect the actual phenotype in a highly complex and readily changing disease as cancer. Proteomics will provide a closer look to this seemingly unanswerable problem. We are at the beginning of the exploration of the behavior of cancer cells in order to apply a more effective therapy based on a more reliable set of diagnostic and prognostic informations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arakawa A, Soh S, Chakaborty S, et al: Prognostic significance of angiogenesis in clinically localized prostate cancer (staining for Factor VIII-related antigen and CD34 antigen). Prostate Cancer Prostatic Dis 1:32–38, 1997

    Article  PubMed  Google Scholar 

  2. Ashida S, Nakagawa H, Katagiri T et al: Molecular features of the transition from prostate intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res 64: 5963–5972, 2004

    Article  PubMed  CAS  Google Scholar 

  3. Battez LL, Srivastava S, Moul JW: Proteomics in prostate cancer. Curr Opin Urol 15: 151–156, 2005

    Article  Google Scholar 

  4. Bernard D, Pourtier-Manzanedo A, Gil J andBeach DH: Myc confers androgen-independent prostate cancer cell growth. J Clin Invest 112:1724–1731, 2003

    PubMed  CAS  Google Scholar 

  5. Calvo A, Gonzales-Moreno O, Yoon C-Y et al: Prostate cancer and the genomic revolution: Advances using microarray analyses. Mutat Res 576: 66–79, 2005

    PubMed  CAS  Google Scholar 

  6. Chen G, Shukeir N, Potti A, et al: Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101:1345–1356, 2004

    Article  PubMed  CAS  Google Scholar 

  7. Chiorino G, Acquadro F, Mello Grand M, et al: Interpretation of expression-profiling results obtained from different platforms and tissue sources: examples using prostate cancer data. Eur J Cancer 40: 2592–2603, 2004

    Article  PubMed  CAS  Google Scholar 

  8. DeMarzo AM, Nelson WG, Isaacs WB et al: Pathological and molecular aspects of prostate cancer. Lancet 361: 955–964, 2003

    Article  CAS  Google Scholar 

  9. Deutsch E, Maggiorella L, Eschwege P et al: Environmental, genetic and molecular features of prostate cancer. Lancet Oncol 5:303–313, 2004

    Article  PubMed  CAS  Google Scholar 

  10. Dhanasekaran SM, Barrette TR, Ghosh D, et al: Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826, 2001

    Article  PubMed  CAS  Google Scholar 

  11. Di Lorenzo G, Tortora G, D’Armiento F, et al: Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8:3438–3444, 2002

    PubMed  Google Scholar 

  12. Dong Y, Zhang H, Hawthorn L, et al: Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res 63: 52–59, 2003

    PubMed  CAS  Google Scholar 

  13. Edwards J, Krishna NS, Witton CJ andBartlett JMS: Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res 9:2571–2581, 2003

    Google Scholar 

  14. Edwards SM, Eeles RA: Unravelling the genetics of prostate cancer. Am J Med Genet C, Semin Med Genet 129: 65–73, 2004

    Article  Google Scholar 

  15. Furuya Y, Nagakawa O andFuse H: Prognostic significance of serum soluble Fas level and its change during regression and progression of advanced prostate cancer. Endocrine J 50:629–633, 2003

    Article  Google Scholar 

  16. Glinsky GV, Glinskii AB, Stephenson AJ, et al: Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 113:913–923, 2004

    PubMed  CAS  Google Scholar 

  17. Gravdal K, Halvorsen OJ, Haukaas SA and Akslen LA: Expression of bFGF/FGFR-1 and vascular proliferation related to clinicopathologic features and tumor progression in localized prostate cancer. Virchows Arch, 2005 (in press)

  18. Gregory CW, Fei X, Ponguta L, et al: Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem 179:7119–7130, 2004

    Google Scholar 

  19. Gsur A, Feik E, Madersbacher S: Genetic polymorphisms and prostate cancer risk. World J Urol 21: 414–423, 2004

    Article  PubMed  CAS  Google Scholar 

  20. Henshall SM, Afar DEH, Hiller J, et al: Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res 63:4196–4203, 2003

    PubMed  CAS  Google Scholar 

  21. Hughes C, Murphy A, Martin C, et al: Molecular pathology of prostate cancer. J Clin Pathol 58: 673–684, 2005

    Article  PubMed  CAS  Google Scholar 

  22. Jennbacken K, Vallbo C, Wang W andDamber JE: Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis. Prostate 65:110–116, 2005

    Article  PubMed  CAS  Google Scholar 

  23. Jung K, Lein M., Stephan C, et al: Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int J Cancer 111:783–791, 2004

    Article  PubMed  CAS  Google Scholar 

  24. Karayi MK, Markham AF: Molecular biology of prostate cancer. Prostate Cancer Prostatic Dis 7: 6–20, 2004

    Article  PubMed  CAS  Google Scholar 

  25. Kaushal V, Mukunyadzi P, Dennis RA, et al: Stage-specific characterization of the vascular endothelia growth factor axis in prostate cancer: expression of lymphangiogenic markers is associated with advanced-stage disease. Clin Cancer Res 11:584–593, 2005

    PubMed  CAS  Google Scholar 

  26. Keshava C, McCanlies EC, Weston A: CYP3A4 polymorphisms —potential risk factors for breast and prostate cancer: a HuGE review. Am J Epidemiol 160: 825–841, 2004

    Article  PubMed  Google Scholar 

  27. Kil PJ, Goldschmidt HM, Wieggers BJ et al: Tissue polypeptide-specific antigen (TPS) determinations before and during intermittent maximal androgen blockade in patients with metastatic prostatic carcinoma. Eur Urol 43:31–38, 2003

    Article  PubMed  CAS  Google Scholar 

  28. Klezovitch O, Chevillett J, Mirosevitch J, et al: Hepsin promotes prostate cancer progression and metastasis. Cancer Cell 6:186–195, 2004

    Article  Google Scholar 

  29. Koivisto PA, Hyytinen ER, Matikainen M, et al: Germline mutation analysis of the androgen receptor gene in Finnish patients with prostate cancer. J Urol 171:431–433, 2004

    Article  PubMed  CAS  Google Scholar 

  30. Kwak C, Jeong SJ, Park MS, et al: Prognostic significance of the nadir prostate specific antigen after hormone therapy for prostate cancer. J Urol 168:995–1000, 2002

    Article  PubMed  Google Scholar 

  31. Lara PN Jr,Meyers FJ, Gray CR, et al: Her-2/neu is overexpressed infrequently in patients with prostate carcinoma. Cancer 94:2584–2589, 2002

    Article  PubMed  Google Scholar 

  32. Lehrer S, Diamond EJ, Mamkine B, et al: Serum interleukin-8 is elevated in men with prostate cancer bone metastases. Technol Cancer Res Treat 3:411, 2004

    PubMed  CAS  Google Scholar 

  33. Li LC, Okino ST, Dahiya R: DNA methylation in prostate cancer. Biophys Biochem Acta 1704: 87–102, 2004

    CAS  Google Scholar 

  34. Li Y, Sarkar FH: Gene expression profiles of genistein-treated PRCA3 prostate cancer cells. J Nutr 132: 3623–3631, 2002

    PubMed  CAS  Google Scholar 

  35. Liede A, Karlan BY, Narod SA: Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2. J Clin Oncol 22: 735–742, 2004

    Article  PubMed  CAS  Google Scholar 

  36. Lorenzo GD, Bianco R, Torora G andCiardillo F: Involvement of growth factor receptors of the epidermal growth factor receptor family in prostate cancer development and progression to androgen independence. Clin Prostate Cancer 2:50–57, 2003

    PubMed  Google Scholar 

  37. Mehta PB, Jenkins BL, McCarthy L, et al: MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion. Oncogeue 22:1381–1389, 2003

    Article  CAS  Google Scholar 

  38. Miyata Y, Sakai H, Hayashi T andKanetake H: Serum insulin-like growth factor binding protein-3/prostate-specific antigen ratio is a useful predictive marker in patients with advanced prostate cancer. Prostate 54:125–132, 2003

    Article  PubMed  Google Scholar 

  39. Mohler JL, Gregory CW, Ford IIIOH, et al: The androgen axis in recurrent prostate cancer. Clin Cancer Res 10:440–448, 2004

    Article  PubMed  CAS  Google Scholar 

  40. Nakamura T, Scorilas A, Stephan C, et al: Quantitative analysis of macrophage inhibitory cytokine-1 (MIC-1) gene expression in human prostatic tissues. Br J Cancer 88:1101–1104, 2003

    Article  PubMed  CAS  Google Scholar 

  41. Nakayama M, Gonzalgo, Yegnasubramanian S, et al: GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem 91: 540–552, 2004

    Article  PubMed  CAS  Google Scholar 

  42. Nie D, Che M, Zacharek A, et al: Differential expression of thromboxane synthase in prostate carcinoma: role in tumor cell motility. Am J Pathol 164:429–439, 2004

    PubMed  CAS  Google Scholar 

  43. Offesen BV, Borre M, Brandt F, et al: Comparison of methods of microvascular staining and quantification in prostate carcinoma: relevance to prognosis. APMIS 110:177–185, 2002

    Article  Google Scholar 

  44. Porkka KP, Visakorpi T: Molecular mechanisms of prostate cancer. Eur Urol 45: 683–691, 2004

    Article  PubMed  CAS  Google Scholar 

  45. Roodman GD: Mechanisms of bone metastasis. N Engl J Med 350:1655–1664, 2004

    Article  PubMed  CAS  Google Scholar 

  46. Ross JS, Kalktkury BV, Sceehan CE, et al: Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adeno-carcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res 10:2466–2472, 2004

    Article  PubMed  CAS  Google Scholar 

  47. Rubin MA, Buyyounouski M, Bagiella E, et al: Microvessel density in prostate cancer: lack of correlation with tumor grade, pathologic stage, and clinical outcome. Urology 53:542–547, 1999

    Article  PubMed  CAS  Google Scholar 

  48. Rubin MA, Mucci NR, Figurski J, et al: E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum Pathol 32:690–697, 2001

    Article  PubMed  CAS  Google Scholar 

  49. Shappell SB, Manning S, Boeglin W, et al: Alterations in lipoxygenase and cyclooxygenase-2 catalytic activity and mRNA expression in prostate carcinoma. Neoplasia 3:287–303, 2001

    Article  PubMed  CAS  Google Scholar 

  50. Shariat SF, Roudier MP, Wilcox GE, et al: Comparison of immunohistochemistry with reverse transcription-PCR for the detection of micrometastatic prostate cancer in lymph nodes. Cancer Res 63:4662–4671, 2003

    PubMed  CAS  Google Scholar 

  51. Stefanou D, Batistatou A, Kamina S, et al: Expression of vascular endothelial growth factor (VEGF) and association with microvessei density in benign prostatic hyperplasia and prostate cancer. In Vivo 18:155–160, 2004

    PubMed  CAS  Google Scholar 

  52. Stewart DA, Cooper CR andSikes RA: Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol 2:1–14, 2004

    Article  Google Scholar 

  53. Straume O, Chappuis PO, Salvesen HB, et al: Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers. Cancer Res 62:6808–6811, 2002

    PubMed  CAS  Google Scholar 

  54. Subbarayan V, Xu XC, Kim J, et al: Inverse relationship between 15-lipoxygenase-2 and PPAR-gainma gene expression in normal epithelia compared with tumor epithelia. Neoplasia 7:280–293, 2005

    Article  PubMed  CAS  Google Scholar 

  55. Thompson J, Hyytinen ER, Haapala K, et al: Androgen receptor mutations in high-grade prostate cancer before hormonal therapy. Lab Invest 83:1709–1713, 2003

    Article  PubMed  CAS  Google Scholar 

  56. Timer J, Rásó E, Döme B, et al: Expression, subcellular localization and putative function of platelet-type 12-lipoxygenase in human prostate cancer cell lines of different metastatic potential. Int J Cancer 87:37–43, 2000

    Article  Google Scholar 

  57. Trikha M, Timor J, Lundy SK, et al: Human prostate carcinoma cells express functional αIIbβ3 integrin. Cancer Res 56:5071–5078, 1996

    PubMed  CAS  Google Scholar 

  58. Uzgare AR, Isaacs JT: Enhanced redundancy in Akt and mitogen-activated protein-kinase-induced survival of malignant versus normal prostate epithelial cells. Cancer Res 64: 6190–6199, 2004

    Article  PubMed  CAS  Google Scholar 

  59. Uzgare AR, Isaacs JT: Prostate cancer: potential targets of anti-proliferative and apoptotic signaling pathways. Int J Biochem Cell Biol 37: 707–714, 2005

    Article  PubMed  CAS  Google Scholar 

  60. Wang W Bergh A andDamber JE: Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neo-vascularization in human prostate cancer. Clin Cancer Res 11:3250–3256, 2005

    Article  PubMed  CAS  Google Scholar 

  61. Welch DR andHunger KW: A new member of the growing family of metastasis suppressors identified in prostate cancer. J Natl Cancer Inst 95:839–891, 2003

    Article  PubMed  Google Scholar 

  62. Xin W, Rhodes DR, Ingold C, et al: Dysregulation of annexin family is associated with prostate cancer progression. Am J Pathol 162: 255–261, 2003

    PubMed  CAS  Google Scholar 

  63. Yu EY, Yu E, Meyer GE andBrower MK: The relation of p53 protein nuclear accumulation and angiogenesis in human prostatic carcinoma. Prostate Cancer Prostatic Dis 1:39–44, 1997

    Article  PubMed  Google Scholar 

  64. Yu YP, Landsittel D, Jing L, et al: Gene expression alteration in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 22:2790–1799, 2004

    Article  PubMed  CAS  Google Scholar 

  65. Zellweger T, Ninck C, Mirlacher M, et al: Tissue microarray analysis reveals prognostic significance of syndecan-1 expression in prostate cancer. Prostate 55:20–29, 2003

    Article  PubMed  Google Scholar 

  66. Zeng Y, Opeskin K, Baldwin ME, et al: Expression of vacular endothelial growth factor receptor-3 by lymphatic endothelial cells is associated with lymph node metastasis in prostate cancer. Clin Cancer Res 10:5137–5144. 2004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Kopper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopper, L., Tímár, J. Genomics of prostate cancer: Is there anything to „translate”?. Pathol. Oncol. Res. 11, 197–203 (2005). https://doi.org/10.1007/BF02893851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02893851

Key words

Navigation