Skip to main content
Log in

Flow sorting of tumor cells for morphometric analysis, particularly of rare cells

  • Original Articles
  • Published:
Virchows Archiv B

Summary

Using flow cytometric DNA measurement and sorting combined with morphometric light microscopy, different groups of cells were studied in a human melanoma pleural effusion, a human melanoma lymph node metastasis and a mouse tumor, as well as in normal reference tissues. Beside cells of the predominant tumor cell population, three types of rare tumor cells were studied after enrichment by sorting: a) giant cells from the >8c region, comprising about 5% of the tumor cells, b) binucleated and multinucleated cells with unequal nuclear sizes within the same cell, found at frequencies of about 1.5%, and c) <2c cells which were derived from the so-called “debris”-region of the DNA histogram, found at frequencies of about 1 to 6%. All these rare cells were found only in the malignant tumors and not in the benign reference tissues. Morphometry showed that the increase in the cellular DNA content in the different fractions of tumor cells was combined with an increase in the cellular and nuclear sizes. However, the n/c-ratio was constant in the whole range of tumor cell fractions, including the fractions from the the <2c and the >8c regions. The n/c-ratio of the <2c cells and giant cells differed from that of corresponding normal cells underlining their origin from the predominant tumor cell population. The possible linkage between the occurrence of the three rare cell types and genetic instability of tumors related to faulty nucleus and cell division is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auffermann W, Fohlmeister I, Böcking A (1988) Diagnostic and prognostic value of DNA image cytometry in myelodysplasia. J Clin Pathol 41:604–608

    Article  PubMed  CAS  Google Scholar 

  • Barlogie B, Raber MN, Schumann J, Johnson TS, Drewinko B, Swartzendruber DE, Göhde W, Andreeff M, Freireich E (1983) Flow cytometry in clinical cancer research. Cancer Res 43:3982–3997

    PubMed  CAS  Google Scholar 

  • Böcking A, Chatelain R, Salterberg A, Hagedorn M, Gross G (1989) Bowenoid papulosis. Classification as a low-grade in situ carcinoma on the basis of histomorphologic and DNA ploidy studies. Anal Quant Cytol Histol 11:419–425

    PubMed  Google Scholar 

  • Büchner T, Hiddemann W, Schumann J, Göhde W, Wörmann B, Ritter J, Kleinemeier HJ, von Bassewitz DB, Roessner A, Müller KM, Grundmann E (1985) DNA aneuploidy—a common cell marker in human malignancies and its correlation to grade, stage and prognosis. In: Büchner T, Bloomfield CD, Hiddemann W, Hossfield DK, Schumann J (eds) Tumor aneuploidy. Springer, Berlin Heidelerg New York Tokyo, pp 41–52

    Google Scholar 

  • Chatelain R, Schunck T, Schindler EM, Böcking A (1989) Diagnosis of prospective malignancy in koilocytic dysplasias of the cervix with DNA cytometry. J Reprod Med 34:505–510

    PubMed  CAS  Google Scholar 

  • Christensson B, Lindemalm C, Johansson B, Mellstedt H, Tribukait B, Biberfeld P (1988) Flow cytometric DNA analysis: a prognostic tool in non-Hodgkin’s lymphoma. Leukemia Res 13:307–314

    Article  Google Scholar 

  • Countryman PI, Heddle JA (1976) The production f micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutation Res 41:321–332

    PubMed  CAS  Google Scholar 

  • Göhde W (1991) A closed light activated particle sorting device Z Naturforsch TeillB Anorg Chem Org Chem Biochem Biophys Biol (in press)

  • Gray DWR, Göhde W, Carter N, Heiden T, Morris PJ (1989) Separation of pancreatic islets by fluorescence-activated sorting. Diabetes [Suppl 1] 38:133–135

    PubMed  Google Scholar 

  • Von Hansemann D (1890) Ueber asymmetrische Zelltheilungen in Epithelkrebsen und deren biologische Bedeutung. Virchows Arch [A] 119:289–307

    Google Scholar 

  • Heddle JA (1973) A rapid in vivo test for chromosomal damage. Mutat Res 18:287

    Google Scholar 

  • Heiden T, Göhde W, Tribukait B (1990) Two-wavelength mercury arc lamp excitation for flow cytometric DNA-protein analyses. Anticancer Res 10:1555–1562

    PubMed  CAS  Google Scholar 

  • Mauro F, Teodori L, Schumann J, Göhde W (1986) Flow cytometry as a tool for the prognostic assessment of human neoplasia. Int J Rad Onc Biol Phys 12:225–236

    Google Scholar 

  • Ploem-Zaaijer JJ, Beyer-Boon ME, Leyte-Veldstra L, Ploem JS (1979) Cytofluorometric and cytophotometric DNA measurements of cervical smears stained using a new bi-color method. In: Pressman NJ, Wied GL (eds) The automation of cancer cytology and cell image analysis. Tutorial of Chicago. Chicago, pp 225–235

    Google Scholar 

  • Sandritter-Beneke (1981) Mitose und Mitosestörungen. In: Sandritter W (ed) Allgemeine Pathologie, Lehrbuch für Studierende und Ärzte. F. K. Schattauer Verlag, Stuttgart New York, pp 180–184

    Google Scholar 

  • Schmid W (1975) The micronucleus test. Mutat Res 313:9

    Google Scholar 

  • Schumann J, Ehring F, Göhde W, Dittrich W (1971) Impulscytophotometrie der DNS in Hauttumoren. Arch Klin Exp Derm 239:377–389

    Article  PubMed  CAS  Google Scholar 

  • Schumann J, Tilkorn H, Göhde W, Ehring F, Straub C (1981) Zytogenetik maligner Melanome. Verh Deutsch Derm Ges XXXII. Tagung, Der Hautarzt, Supplementum V, 32. Jahrgang. Springer, Berlin Heidelberg New York, pp 62–65

    Google Scholar 

  • Sekiguchi T, Shelton K, Ringertz NR (1978) DNA content of microcells prepared from rat kangaroo and mouse cells. Exp Cell Res 113:247–258

    Article  PubMed  CAS  Google Scholar 

  • Stöhr M, Vogt-Schaden M, Knobloch M, Vogel R, Futtermann G (1978) Evaluation of eight fluorochrome combinations for simultaneous DNA-protein flow analyses. Stain Techn 53:205–215

    PubMed  Google Scholar 

  • Stöhr M, Goerttler K (1979) The Heidelberg flow analyzer and sorter (HEIFAS) approach on the presreening of uterine cancer. J Histochem Cytochem 27:564–566

    PubMed  Google Scholar 

  • Tanke HJ, Van Driel-Kulker AMJ, Cornelisse CJ, Ploem JS (1982) Combined flow cytometric and image cytometry of the same cytological sample. J Micr 130:11–22

    Google Scholar 

  • Takahashi M (1981) Cellular alteration simulating malignancy. In: Takahashi M (ed) Color atlas of cancer cytology. Georg Thieme Verlag, Stuttgart New York Igaku-Shoin Ltd. Tokyo New York, pp 50–56

    Google Scholar 

  • Tribukait B (1984) Clinical DNA flow cytometry. Med Oncol Tumor Pharmacoth 1:211–218

    CAS  Google Scholar 

  • Tribukait B (1987) Flow cytometry in assessing the clinical aggressiveness of genito-urinary neoplasms. World J Urol 5:108–122

    Article  Google Scholar 

  • Tyrer HW, Pressman NJ, Albright CD, Frost JK (1985) Automatic cell identification and enrichment in lung cancer: V. adenocarcinoma and large cell undifferentiated carcinoma. Cytometry 6:37–46

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cyt 68:251–306

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiden, T., Schumann, J. & Göhde, W. Flow sorting of tumor cells for morphometric analysis, particularly of rare cells. Virchows Archiv B Cell Pathol 61, 29–38 (1992). https://doi.org/10.1007/BF02890402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02890402

Key words

Navigation