Skip to main content
Log in

Flow cytometry in assessing the clinical aggressiveness of genito-urinary neoplasms

  • Published:
World Journal of Urology Aims and scope Submit manuscript

Summary

Flow cytometry allows the cellular DNA content of tumors to be measured in a large number of cells with a high degree of accuracy. In addition to the degree of ploidy, reflecting the total number of chromosomes or the stem line of the tumor, the proportions of cells in the various parts of the cell cycle can be determined. The high speed of the method fulfils one prerequisite for application in clinical use. This article reviews the accumulated experience of flow cytometry on cell material of tumors of the genito-urinary tract demonstrating that carcinomas of the bladder, the prostate, and renal cell carcinomas can be further subdivided according to ploidy characteristics and proportions of s-phase cells. Follow-up shows the prognostic significances of these tumor properties. Flow cytometry can therefore be expected to become a valuable adjunct to clinical staging and morphologic grading in the assessment of the malignancy potential of genito-urinary neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23

    Google Scholar 

  2. Nicolson GL (1984) Generation of phenotypic diversity and progression in metastatic tumor cells. Cancer Metastasis Reviews 3:25

    Google Scholar 

  3. Tribukait B (1984) Flow cytometry in surgical pathology and cytology of tumors of the genito-urinary tract. In: Koss LG, Coleman DV (eds) Adv Clin Cytology 2:163

  4. Peehl DM, Stamey TA (1986) Oncogenes: A review with relevance to cancers of the urogenital tract. J Urol 135:897

    Google Scholar 

  5. Melamed MR, Mullaney PR, Mendelsohn ML (1979) Flow cytometry and sorting. John Wiley, New York

    Google Scholar 

  6. Shapiro HM (1985) Practical Flow Cytometry. Allan R Liss, New York

    Google Scholar 

  7. Laerum OD, Farsund T (1981) Clinical application of flow cytometry: a review. Cytometry 2:1

    Google Scholar 

  8. Barlogie B, Rabes MN, Schumann J, Johnson TS, Drewinko B, Swartzendruber DE, Göhde W, Andreff M, Freireich EJ (1983) Flow cytometry in clinical cancer research. Cancer Res 43:3982

    Google Scholar 

  9. Friedlander ML, Hedley DW, Taylor JW (1984) Clinical and biological significance of aneuploidy in human tumours. J Clin Pathol 37:961

    Google Scholar 

  10. de Vere White RW, Deitch AD (1985) The role of flow cytometry in urologic disease. Seminars in Urology Vol III:132 Masson, New York

    Google Scholar 

  11. Vindelöv LL, Christensen IJ, Nissen NI (1982) Standardization of high-resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry 3:328

    Google Scholar 

  12. Hansson J, Tribukait B, Lewensohn R, Ringborg U (1982) Flow cytofluorometric DNA analysis of metastases of human malignant melanomas. Analyt Quant Cytol 25:99

    Google Scholar 

  13. Wijkström H, Granberg-Öhman I, Tribukait B (1984) Chromosomal and DNA patterns in transitional cell bladder carcinoma. Cancer 53:1718

    Google Scholar 

  14. Tribukait B, Granberg-Öhman I, Wijkström H (1986) Flow cytometric DNA and cytogenetic studies in human tumors: A comparison and discussion of the differences in modal values obtained by the two methods. Cytometry 7:194

    Google Scholar 

  15. Sandberg AA (1980) The Chromosomes in human cancer and leukemia. Elsevier, New York, p 503

    Google Scholar 

  16. Granberg-Öhman I, Tribukait B, Wijkström H (1984) Cytogenetic analysis of 52 transitional cell bladder carcinomas. Cancer Genet Cytogenet 11:69

    Google Scholar 

  17. Baisch H, Göhde W, Linden W (1975) Analysis of PCP-data to determine the fraction of cells in the various phases of cell cycle. Rad Environm Biophys 12:31

    Google Scholar 

  18. Falor HF, Ward RM (1978) Prognosis in early carcinoma of the bladder based on chromosomal analysis. J Urol 119:44

    Google Scholar 

  19. Atkin NB, Kay R (1979) Prognostic significance of modal DNA value and other factors in malignant tumours based on 1465 cases. Br J Cancer 40:210

    Google Scholar 

  20. Collste LG, Darzynkiewicz Z, Traganos F, Sharpless TK, Sogani P, Grabstald H, Whitmore Jr WF, Melamed MR (1980) Flow cytometry in bladder cancer detection and evaluation using acridine orange metachromatic nucleic acid staining of irrigation cytology specimens. J Urol 123:478

    Google Scholar 

  21. Gratzner HG (1982) Monoclonal antibody to 5-bromo and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 218:474

    Google Scholar 

  22. Feitz WFJ, Beck HLM, Smeets AWGB, Debruyne FMJ, Vooijs GP, Herman CJ, Ramaekers FCS (1985) Tissue specific markers in flow cytometry of urological cancers: cytokeratins in bladder carcinoma. Int J Cancer 36:349

    Google Scholar 

  23. Feitz WFJ, Karthaus HFM, Beck HLM, Romijn C, Van der Meyden APM, Debruyne FMJ, Vooijs GP, Ramaekers FCS (1986) Tissue-specific markers in flow cytometry of urological cancers. II. Cytokeratin and vimentin in renal-cell tumors. Int J Cancer 37:201

    Google Scholar 

  24. Helander K, Tribukait B (1987) Modal DNA values of normal and malignant urothelial cells of the bladder in relation to nuclear size. Analyt Quant Cytol (in press)

  25. U.I.C.C. (Union Internationale Contre le Cancer) TNM Classification of malignant tumours, Bladder JCD-O 188 (1978) Ed Harmer MH, Edition, Geneva, p 113

    Google Scholar 

  26. Mostofi FK, Sobin LH, Tovloni H (1973) WHO: International Histological Classification of Tumours. No 10: Histological Typing of Urinary Bladder Tumours (WHO, Geneva)

    Google Scholar 

  27. Tribukait B, Esposti P-L (1978) Quantitative flow-microfluorometric analysis of the DNA in cells from neoplasms of the urinary bladder: Correlation of aneuploidy with histological grading and the cytological findings. Urol Res 6:201

    Google Scholar 

  28. Jakobson A, Bichel P, Sell A (1979) Flow cytometric investigations of human bladder carcinoma compared to histological classification. Urol Res 7:109

    Google Scholar 

  29. Klein FA, Herr HW, Sogani PC, Whitmore WF Jr, Melamed MR (1982) Detection and follow-up of carcinoma of the urinary bladder by flow cytometry. Cancer 50:389

    Google Scholar 

  30. Tribukait B, Gustafson H, Esposti P-L (1982) The significance of ploidy and proliferation in the clinical and biological evaluation of bladder tumors: a study of 100 untreated cases. Brit J Urol 54:130

    Google Scholar 

  31. Farsund T, Hoestmark JG, Laerum OD (1984) Relation between flow cytometric DNA distribution and pathology in human bladder cancer. Cancer 54:1771

    Google Scholar 

  32. Chin JL, Huben RP, Nava E, Rustum YM, Greco M, Pontes E, Frankfurt OS (1985) Flow cytometric analysis of DNA content in human bladder tumors and irrigation fluids. Cancer 56:1677

    Google Scholar 

  33. Murphy WM, Chandler RW, Trafford RM (1986) Flow cytometry of deparafinnized nuclei compared to histological grading for the pathological evaluation of transitional cell carcinomas. J Urol 135:694

    Google Scholar 

  34. Tribukait B (1986) Diagnostic and prognostic significance of modal DNA-values and proportion of S-phase cells in human carcinoma of the bladder. In: Mary JY, Rigaut JP (eds) Quantitative image analysis in cancer cytology and histology. Elsevier, p 315

  35. Tribukait B (1984) Clinical DNA flow cytometry. Med Oncol Tumor Phamacother 1:211

    Google Scholar 

  36. Ising K (1958) Effect of heterologous transplantation on chromosomes of ascites tumors. Acta Path Microbiol Scand [Suppl] 127

  37. Gustafson H, Tribukait B (1985) Characterization of bladder carcinomas by flow DNA analysis. Eur Urol 11:410

    Google Scholar 

  38. Farsund T, Høstmark J (1983) Mapping of cell cycle distribution in normal human urinary bladder epithelium. Scand J Urol Nephrol 17:51

    Google Scholar 

  39. Farsund T, Laerum OD, Høstmark J (1983) Ploidy disturbance of normal-appearing bladder mucosa in patients with urothelial cancer: Relationship to morphology. J Urol 130:1076

    Google Scholar 

  40. Ghoneim MA (1986) (personal communication)

  41. Frankfurt OS, Slocum HK, Rustum YM, Arbuck SG, Pavelic ZP, Petrelli N, Huben RP, Pontes EJ, Greco WR (1984) Flow cytometric analysis of DNA aneuploidy in primary and metastatic human solid tumors. Cytometry 5:71

    Google Scholar 

  42. Friedlander ML, Taylor IW, Russell P, Tattersall MHN (1984) Cellular DNA content — a stable feature in epithelial ovarian cancer. Br J Cancer 49:173

    Google Scholar 

  43. Gustafson H, Tribukait B, Esposti PL (1982) DNA profile and tumour progression in patients with superficial bladder tumours. Urol Res 10:13

    Google Scholar 

  44. Heney NM, Ahmed S, Malachi J, Flanagan MJ, Frable W, Corder MP, Hafermann MD, Hawkins IR (1983) Superficial bladder cancer: progression and recurrence. J Urol 130:1083

    Google Scholar 

  45. Gustafson H, Tribukait B, Esposti PL (1982) DNA pattern, histological grade and multiplicity related to recurrence rate in superficial bladder tumours. Scand J Urol Nephrol 16:135

    Google Scholar 

  46. Gustafson H (1986) Personal communication

  47. Koss LG (1975) Tumours of the urinary bladder Atlas of Tumour Path II, Series 2. Washington D.C. Armed Forces Institute of Pathology

    Google Scholar 

  48. Gustafson H, Tribukait B, Esposti PL (1982) The prognostic value of DNA analysis in primary carcinoma in situ of the urinary bladder. Scand J Urol Nephrol 16:141

    Google Scholar 

  49. Quilty PM, Duncan W (1986) Primary radical radiotherapy for T3 transitional cell cancer of the bladder: An analysis of survival and control. Int J Rad Oncol Biol Phys 12:853

    Google Scholar 

  50. Wijkström H, Gustafson H, Tribukait B (1987) The value of deoxyribonucleic acid analysis by flow cytometry for prognosis and follow-up in radically irradiated bladder cancer (in press)

  51. Wijkström H, Gustafson H, Tribukait B (1984) Deoxyribonucleic acid analysis in the evaluation of transitional cell carcinoma before cystectomy. J Urol 132:194

    Google Scholar 

  52. Klein FA, Whitmore WF Jr., Wolf RM, Herr HW, Sogani PC, Staianoco-Coico PC, Melamed MR (1983) Presumptive downstaging from preoperative irradiation for bladder cancer as determined by flow cytometry: preliminary report. Int J Rad Oncol Biol Phys 9:487

    Google Scholar 

  53. Whitmore WF Jr (1973) The natural history of prostatic cancer. Cancer 32:1104

    Google Scholar 

  54. Bichel P, Frederiksen P, Kjaer T, Thommesen P, Vindeløv LL (1977) Flow microfluorometry and transrectal fine-needle biopsy in the classification of human prostatic carcinoma. Cancer 40:1206

    Google Scholar 

  55. Tribukait B, Esposti P-L, Rönström L (1980) Tumour ploidy for characterization of prostatic carcinoma: Flow-cytofluorometric DNA studies using aspiration biopsy material. Scand J Urol Nephrol 55:59

    Google Scholar 

  56. Rönström L, Tribukait B, Esposti PL (1981) DNA pattern and cytological findings in fine needle aspirates of untreated prostatic tumours. A flow-cytofluorometric study. Prostate 2:79

    Google Scholar 

  57. Frankfurt OS, Chin JL, Englander LS, Greco WR, Pontes JE, Rustum YM (1985) Relationship between DNA ploidy, glandular differentiation, and tumor spread in human prostate cancer. Cancer Res 45:1418

    Google Scholar 

  58. Fordham MVP, Burdge AH, Matthews J, Willians G, Cooke T (1986) Prostatic carcinoma cell DNA content measured by flow cytometry and its relation to clinical outcome. Br J Surg 73:400

    Google Scholar 

  59. Esposti P-L (1971) Cytologic malignancy grading of prostatic carcinoma by transrectal aspiration biopsy: A five-year follow-up of 469 hormone-treated patients. Scand J Urol Nephrol 5:199

    Google Scholar 

  60. Union Internationale Contre le Cancer (1978) TNM Classification of malignant Tumours. 3rd ed. Geneva

  61. Tribukait B, Rönström L, Esposti PL (1983) Quantitative and qualitative aspects of flow DNA measurements related to the cytologic grade in prostatic carcinoma. Analyt Quant Cytol 5:107

    Google Scholar 

  62. Greenbaum E, Koss LG, Sherman AB, Elequin F (1984) Comparison of needle aspiration and solid biopsy technics in the flow cytometric study of DNA distributions of surgically resected tumors. Am J Clin Path 82:559

    Google Scholar 

  63. Hedley DW, Friedlander ML, Taylor IW, Rugg CA, Musgrove EA (1983) Method for analysis of cellular DNA content in paraffinembedded pathological material using flow cytometry. J Histochem Cytochem 31:1333

    Google Scholar 

  64. Bateman H (1910) The solution of a system of differential equations occurring in the theory of radioactive transformations. Cambridge Phil Soc Proc 15:423

    Google Scholar 

  65. Whitmore WF Jr (1984) Natural history and staging of prostate cancer. In: Murphy GP (ed) Urologic Clinics of North America Vol 11, No 2:205. Saunders, Philadelphia

    Google Scholar 

  66. Schouman M, Warter A, Roos M, Bollack C (1984) Renal cell carcinoma: Statistical study of survival based on pathological criteria. World J Urol 2:109

    Google Scholar 

  67. Syrjänen K, Hjelt L (1978) Grading of human renal adenocarcinoma. Scand J Urol Nephrol 12:49

    Google Scholar 

  68. Skinner DG, Bolvin RB, Vermillion CD, Pfister RC, Leadbetter WF (1971) Diagnosis and management of renal cell carcinoma. A clinical and pathologic study of 309 cases. Cancer 28:1165

    Google Scholar 

  69. Baisch H, Otto U, König K, Klöppel G, Köllermann M, Linden WA (1982) DNA content of human kidney carcinoma cells in relation to histological grading. Br J Cancer 45:878

    Google Scholar 

  70. Schwabe HW, Adolphs H-D, Vogel J (1983) Flow-cytometric studies in renal carcinoma. Urol Res 11:121

    Google Scholar 

  71. Otto U, Baisch H, Huland H, Klöppel G (1984) Tumor cell deoxyribonucleic acid content and prognosis in human renal cell carcinoma. J Urol 132:237

    Google Scholar 

  72. Ljungberg B, Stenling R, Roos G (1985) DNA content in renal cell carcinoma with reference to tumor heterogeneity. Cancer 56:503

    Google Scholar 

  73. Chin JL, Pontes JE, Frankfurt OS (1985) Flow cytometric deoxyribonucleic acid analysis of primary and metastatic human renal cell carcinoma. J Urol 133:582

    Google Scholar 

  74. Baisch H, Otto U, Klöppel G (1986) Malignancy index based on flow cytometry and histology for renal cell carcinomas and its correlation to prognosis. Cytometry 7:200

    Google Scholar 

  75. Ljungberg B, Stenling R, Roos G (1986) Prognostic value of the deoxyribonucleic acid content in metastatic renal cell carcinoma. J Urol 136:801

    Google Scholar 

  76. Ljungberg B, Stenling R, Roos G (1986) DNA content and prognosis in renal cell carcinoma. A comparison between primary tumors and metastases. Cancer 57:2346

    Google Scholar 

  77. Baisch H, Otto U, Klöppel G (1986) Long-term serial transplantation of 30 different human renal cell carcinomas into NMRI (nu/nu) mice: flow cytometric, histologic, and growth studies. JNCI 76:269

    Google Scholar 

  78. Rainwater LM, Farrow GM, Lieber MM (1986) Flow cytometry of renal oncocytoma: Common occurrence of deoxyribonucleic acid polyploidy and aneuploidy. J Urol 135:1167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Stockholm Cancer Society

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tribukait, B. Flow cytometry in assessing the clinical aggressiveness of genito-urinary neoplasms. World J Urol 5, 108–122 (1987). https://doi.org/10.1007/BF00327068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327068

Keywords

Navigation