Skip to main content
Log in

Intracellular control of proton extrusion inSaccharomyces cerevisiae

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Wild-type and mutant (glucosephosphate isomerase, pyruvate kinase and respiratory deficientrho) strains were used to determine the kinetics of substrate-induced H+ efflux in dilute suspensions, glucose-induced production of titratable acidity in intact cells and cell-free extracts, and kinetics of extracellular titratable acidity production (pH-stat). The results indicate that (1) initial phases of H+ efflux proceed at the expense of preexisting cell acidity reserves while subsequent efflux is supported by de novo formed acidity, (2) apart from regulation by pHout the H+ efflux is subject to intracellular control, (3) intracellular acidity level is controlled separately from H+ efflux. Tentative scheme is proposed for the regulation of H+ fluxes inS. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borst-Pauwels G.W.F.H., Dobbelmann J.: Determination of the yeast cell pH.Acta Bot. Neerl. 21, 149 (1972).

    CAS  Google Scholar 

  • Duro A.F., Serrano R.: Inhibition of auocinate production during yeast fermentation by deenergization of the plasma membrane.Current Microbiol. 6, 111 (1981).

    Article  CAS  Google Scholar 

  • Galzy P., Slonimski P.P.: Variations physiologiques de la levure au course de la croissance sur l’acide lactique ou sur le glucose comme seule source de carbone.Compt.Rend. 245, 2423 (1957).

    CAS  Google Scholar 

  • Herrera L.S., Pasocual C.: Genetical and biochemical studies of glucosephosphate isomerase deficient mutants inSaccharomyces cerevisiae.J.Gen.Microbiol. 108, 305 (1978).

    CAS  Google Scholar 

  • Moses V., Smith M.J.H.: Uncoupling reagents and metabolism. 2. Effects of 2:4-dinitrophenol and salicylate on glucose metabolism in baker’s yeast.Biochem.J. 76, 585 (1960).

    PubMed  CAS  Google Scholar 

  • Opekarová M., Sigler K.: Acidification power: Indicator of metabolic activity and autolytic changes inSaccharomyces cerevisiae. Folia Microbiol.27, 395 (1982).

    Article  Google Scholar 

  • Pascual C., Alonso A., Pérez C., Herrera L.S.: Glucose and fructose consumption in a phosphoglucoseisomeraseless mutant inSaccharomyces cerevisiae. Arch. Microbiol.121, 17 (1979).

    Article  CAS  Google Scholar 

  • Pascual C., Kotyk A.: A simple spectroscopic method for determining proton release from yeast cells.Anal.Biochem. 123, 201 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Pascual C., Romay C., Sigler K.: Proton extrusion inSaccharomyces cerevisiae mutants in very dilute suspensions.Folia Microbiol.,28, 353 (1983).

    CAS  Google Scholar 

  • Riemersma J.C., Alsbach E.J.J.: Proton translocation during anaerobic energy production inSaccharomyces cerevisiae. Biochim.Biophys.Acta339, 274 (1974).

    Article  CAS  Google Scholar 

  • Sigler K., Knotková A., Páca J., Wurst M.: Extrusion of metabolites from baker’s yeast during glucose-induced acidification.Folia Microbiol. 25, 311 (1980).

    Article  CAS  Google Scholar 

  • Sigler K., Knotková A. Kotyk A.: Factors governing substrate-induced generation and extrusion of protons in the yeastSaccharomyces cerevisiae. Biochim.Biophys.Acta643, 572 (1981a).

    Article  PubMed  CAS  Google Scholar 

  • Sigleb K., Kotyk A., Knotková A., Opekarová M.: Processes involved in the creation of buffering capacity and in substrate-induced proton extrusion in the yeastSaccharomyces cerevisiae. Biochim.Biophys.Acta643, 582 (1981b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigler, K., Pascual, C. & Romay, C. Intracellular control of proton extrusion inSaccharomyces cerevisiae . Folia Microbiol 28, 363–370 (1983). https://doi.org/10.1007/BF02879485

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879485

Keywords

Navigation