Skip to main content
Log in

Transport of ribitol and D-glucose in the yeastCandida guillermondii

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The uptakes of the linear polyol ribitol and ofd-glucose byCandida guillermondii were found to be carrier-mediated and to require metabolic energy. In glucose-grown cells ribitol possibly enters by simple diffusion but after an induction period a specific transport system is synthesized, inhibitable by higher concentrations of arabinitols, xylitol, mannitol and sorbitol. Actidione blocks the synthesis of the inducible ribitol transport system. Two systems of different affinity for substrate were found to operate in the uptake of both glucose and of ribitol. Counter-transport experiments with ribitol,d-glucose and 3-O-methyl-d-glucose support the carrier nature of the uptake system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett J. A.: The catabolism of acyclic polyols by yeasts.J. Gen. Microbiol. 52, 131 (1968).

    CAS  Google Scholar 

  • Canh D. S. Hokák J., Kotyk A. Říhová L.: Transport of acyclic polyols inSaccharomyces cerevisiae.Folia Microbiol. 20, 320 (1975).

    CAS  Google Scholar 

  • Cirillo V. P. Wilkins P. O.: Use of uranyl ions in membrane transport studies.J. Bacteriol. 87 232 (1964).

    PubMed  CAS  Google Scholar 

  • Cirillo V. P.: Galactose transport inSaccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system.J. Bacteriol. 95, 1727 (1968).

    PubMed  CAS  Google Scholar 

  • Ehwald R., Sammler P., Göring H.: Different affinities of the α- and β-anomers of D-glucose D-mannose and D-xylose for the glucose uptake system of baker’s yeast.Folia Microbiol. 18, 102 (1973).

    CAS  Google Scholar 

  • Haškovec C., Kotyk A.: Transport system for acyclic polyols and monosaccharides inTorulopsis Candida Folia Microbiol. 18, 118 (1973).

    Article  Google Scholar 

  • Hedenström M. V., Höfer M.: Protoplasten der HefeRhodotorula gracilis II. Physiologische und Transporteigenschaften.Arch. Microbiol. 98, 59 (1974).

    Article  Google Scholar 

  • Höfer M.: ‚’Carrier”-vermittelter Transport durch Zellmembranen. Umschau 1970, 477 (1970).

  • Klöppel R., Höfer M.: Untersuchungen zur Aufnahme von Polyalkoholen bei der obligat aeroben HefeRhodotorula gracilis.Zbl. Bakt. Hyg. I. Abt. Orig. A 228, 211 (1974).

    Google Scholar 

  • Klöppel R., Höfer M.: Transport und Umsatz von Polyalkoholen bei der HefeRhodotorula gracilis (glutinis) I. Konstitutiver Polyalkoholtransport.Arch. Microbiol. 107, 329 (1976a).

    Article  PubMed  Google Scholar 

  • Klöppel R., Höfer M.: Transport und Umsatz von Polyalkoholen bei der HefeEhodotorula gracilis (glutinis) II. Induzierbarer Transport und Abbau von Pentitolen.Arch. Microbiol. 107, 335 (1976b).

    Article  PubMed  Google Scholar 

  • Kotyk A., Haškovec C.: Properties of the sugar carrier in baker’s yeast. III. Induction of the galactose carrier.Folia Microbiol. 13, 12 (1968).

    Article  CAS  Google Scholar 

  • Kotyk A., Janáček K.: Cell Membrane Transport. Principles and Techniques. 2nd ed., p. 349. New York-London, Plenum Press (1975).

    Google Scholar 

  • Kotyk A., Ponec M., Říhová L.: Uptake of amino acids by actidione-treated yeast cells. I. Specificity of carriers.Folia Microbiol. 16, 432 (1971).

    Article  CAS  Google Scholar 

  • Lewis D. H., Smith D. C.: Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism.New Phytol. 66, 143 (1967).

    Article  CAS  Google Scholar 

  • Mavrina L.: Vergleichende Untersuchungen des Monosaccharid-Transportes bei einigen Hefen und hefeartigen Pilzen. Dissertation, Biowiss. Fak. Humboldt Univ. Berlin (1976).

  • Miersch J., Reinbothe H.: Purinstoffweehsel und Riboflavinbildung in Mikroorganismen. XIII. Herkunft der Ribitylseitenkette des Riboflavins inCandida guillermondii (Cast.) Lang et G.Biochem. Physiol. Pflanzen 166, 437 (1974).

    CAS  Google Scholar 

  • Nieden Z. K., Schlee D., Reinbothe H.: Purinstoffwechsel und Riboflavinbildung in Mikroorganismen. IX. Der Einfluss des Eisens auf den Glukoseumsatz vonCandida guilliermondii (Cast.) Lang et G.Biochem. Physiol. Pflanzen 164, 135 (1973).

    Google Scholar 

  • Robbie J. P., Wilson T. H.: Transmembrane effects of β-galactosides on thiomethyl-β-galactoside transport inEscherichia coli.Biochim. Biophys. Acta 173, 234 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Salewski L., Miersch J., Reinbothe H.: Zur Polyolbildung aus Glukose in der flavinogenen HefeCandida guilliermondii (Cast.) Lang et G.Biochem. Physiol. Pflanzen 170, 501 (1976).

    CAS  Google Scholar 

  • Stacey B. E.: Plant polyols. In:Plant Carbohydrate Biochemistry (Pridham J. B., ed.), p. 47. New York-London, Academic Press (1974).

    Google Scholar 

  • Wasternack C.: Uptake and incorporation of pyrimidines inEuglena gracilis.Arch. Microbiol. 109, 167 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miersch, J. Transport of ribitol and D-glucose in the yeastCandida guillermondii . Folia Microbiol 22, 363–372 (1977). https://doi.org/10.1007/BF02877672

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02877672

Keywords

Navigation