Skip to main content

Advertisement

Log in

Development and characterization of an adapted form ofdroopy, a diploid potato mutant deficient in abscisic acid

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

A cultivated diploid potato breeding population has been selected for adaptation to growing, tuberizing (under relatively long days), and storing (including long dormancy) under New Brunswick conditions. In this population, a mutant was discovered that appeared similar to the earlier describeddroopy mutant, which is deficient in abscisic acid and is unable to regulate water loss from its leaves. The physiology and genetics of the newly discovered mutant were studied and compared in detail with the description ofdroopy. This mutant has a longer tuber dormancy than the originaldroopy. In families segregating fordroopy and normal, similar dormancies and endogenous abscisic acid levels in tubers were observed betweendroopy and normal genotypes. The effect of the mutant gene appears to be tissue specific, affecting aboveground plant parts only. A test for allelism indicated that this mutant is allelic todroopy. Classical linkage analyses confirmed previously reported close linkage between theDr (droopy) and theS (incompatibility) loci. TheDr locus has been mapped in this study to the top of chromosome I. Several test crosses indicated reciprocal differences in the segregation ratios betweendroopy and normal In keeping with thedroopy (drdr) genotype, drought-stressed leaves of the mutant were incapable of increasing abscisic acid production compared to the normal. This mutant, with its apparent developmentally restricted expression, may be useful in elucidating the genetic and physiological processes associated with such major events as tuberization, response to drought stress and tuber dormancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bamberg, J.B. 1999. Dependence on exogenous gibberellin for seed germination inSolanum acaule and otherSolanum (potato) species. Am J Potato Res 76:351–355.

    CAS  Google Scholar 

  • Bamberg, J.B., M.W. Martin, J.J. Schartner, and D.M. Spooner. 1996. Inventory of tuber-bearingSolanum species. Potato Introduction Station, NRSP-6, Sturgeon Bay, WI. 110 p.

    Google Scholar 

  • Bensalim, S., J. Nowak, and S.K. Asiedu. 1998. Aplant growth promoting rhizobium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152.

    Google Scholar 

  • Bradford, K.J., T.D. Sharkey, and G.D. Farquhar. 1983. Gas exchange, stomatal behavior, and δ13C values of the flacca tomato mutant in relation to abscisic acid. Plant Physiol 72:245- 250.

    PubMed  CAS  Google Scholar 

  • Cipar, M.S., S.J. Peloquin, and R.W. Hougas. 1964. Inheritance of incompatibility in hybrids betweenSolanum tuberosum haploids and diploid species. Euphytica 13:163–172.

    Google Scholar 

  • Coleman, W.K 1988. Tuber age as a contributory factor in the water relations of potato(Solanum tuberosum L.). Am Potato J 65:109–118.

    Article  Google Scholar 

  • Coleman, W.K. 1998. Carbon dioxide, oxygen and ethylene effects on potato tuber dormancy release and sprout growth. Ann Bot 82:21–27.

    Article  CAS  Google Scholar 

  • Coleman, W.K., and R.R. King. 1984. Changes in endogenous abscisic acid, soluble sugars and proline levels during tuber dormancy inSolanum tuberosum L. Am Potato J 61:437–449.

    Article  CAS  Google Scholar 

  • Duckham, S.C., I.B. Taylor, R.S.T. Linforth, R.J. Al-Naieb, B.A. Marples, and W.J. Bowman. 1989. The metabolism ofcis ABA-aldehyde by the wilty mutants of potato, pea andArabidopsis thaliana. J Expt Bot 40:901–905.

    Article  CAS  Google Scholar 

  • Ekanayake, I.J., and J.P. De Jong. 1992. Stomatal response of some cultivated and wild tuber-bearing potatoes in warm tropics as influenced by water deficits. Ann Bot 70:53–60.

    Google Scholar 

  • Elmqvist, T., and P.A. Cox. 1996. The evolution of vivipary in flowering plants. Oikos 77:3–9.

    Article  Google Scholar 

  • Farnsworth, E.J., and J.M. Farrant. 1998. Reductions in abscisic acid are linked with viviparous reproduction in mangroves. Am J Bot 85:760–769.

    Article  CAS  Google Scholar 

  • Gebhardt, C., E. Ritter, A. Barone, T. Debener, B. Walkemeier, U. Schachtschabel, H. Kaufmann, R.D. Thompson, M.W. Bonierbale, M.W. Ganal, S.D. Tanksley, and F. Salamini. 1991. RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83:49–57.

    Article  Google Scholar 

  • Groot, S.P.C., and C.M. Karssen. 1992. Dormancy and germination of abscisic acid-deficient tomato seeds. Plant Physiol 99:952–958.

    PubMed  CAS  Google Scholar 

  • Groot, S.P.C., I.I. van Yperen, and C.M. Karsssen. 1991. Strongly reduced levels of endogenous abscisic acid in developing seeds of tomato mutantsitiens do not influence in vivo accumulation of dry matter and storage proteins. Physiol Plant 81:73–78.

    Article  CAS  Google Scholar 

  • Hilhorst, H.W.M., and C.M. Karssen. 1992. Seed dormancy and germination: The role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Reg 11:225–238.

    Article  CAS  Google Scholar 

  • Jensen, A.B., P.K. Busk, M. Figueras, M.M. Albá, G. Peracchia, R. Messeguer, A. Goday, and M. Pagès. 1996. Drought signal transduction in plants. J Plant Growth Reg 20:105–110.

    Article  CAS  Google Scholar 

  • King, J. 1991. The Genetic Basis of Plant Physiological Processes. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Koornneef, M. 1986. Genetic aspects of abscisic acid.In: Blonstein, A.D., and P.J. King (eds.), A Genetic Approach to Plant Biochemistry, pp. 35–54. Springer, New York.

    Google Scholar 

  • Lee, E.T. 1992. Statistical Methods for Survival Data Analysis. 2nd ed. John Wiley. New York.

    Google Scholar 

  • Luo, M., R.D. Hill, and S.S. Mohapatra 1993. Role of abscisic acid in plant responses to the environment.In: Gresshoff, P.M. (ed.), Plant Responses to the Environment, pp. 147–165. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Marin, A., and A. Marion-Poll. 1997. Tomatoflacca mutant is impaired in ABA aldehyde oxidase and xanthine dehydrogenase activities. Plant Physiol Biochem 35:369–372.

    CAS  Google Scholar 

  • Neill, S.J. and R. Horgan. 1985. Abscisic acid production and water relations in wilty tomato mutants subjected to water deficiency. J Expt Bot 36: 1222–1231.

    Article  CAS  Google Scholar 

  • Peña-Cortés, H., J. Fisahn and L. Willmitzer. 1995. Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci, USA 92:4106 - 4113.

    Article  PubMed  Google Scholar 

  • Quarrie, S.A. 1982. Droopy: a wilty mutant of potato deficient in abscisic acid. Plant, Cell Envir 5: 23 -26.

    CAS  Google Scholar 

  • Quarrie, S.A. 1987. Use of genotypes differing in endogenous abscisic acid levels in studies of physiology and development.In: Hoad, G.V., J.R. Lenton, M.B. Jackson, and R. K. Atkin (eds.), Hormone Action in Plant development: A Critical Appraisal, pp. 89–105. Butterworths. London.

    Google Scholar 

  • Quarrie, S.A. 1991. Implications of genetic differences in ABA accumulation for crop production.In: Davies, W.J., and H.G. Jones (eds.), Abscisic Acid: Physiology and Biochemistry, pp. 227–243.. Bios Scientific Publishers, Oxford.

    Google Scholar 

  • Reid, J.B. 1993. Plant hormone mutants. J. Plant Growth Reg 12:207–226.

    Article  CAS  Google Scholar 

  • Rock, C.D., and R.S. Quatrano. 1995. The role of hormones during seed development.In: Davies, P.J. (ed.), Plant Hormones: Physiology, Biochemistry and Molecular Biology, pp. 671–697. Kluwer Acad. Publ., Dordrecht, Netherlands..

    Google Scholar 

  • Seo, M., A.J.M. Peeters, H. Koiwa, T. Oritani, A Marion-Poll, J.A.D. Zeevaart, M. Koornneef, Y. Kamiya, and T. Koshiba. 2000. TheArabidopsis aldehyde oxidase 3(AA03) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci, USA. 97:12908–12913.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds, N.W. 1964. The genetics of seed and tuber dormancy in the cultivated potatoes. Heredity 19:489–504.

    Google Scholar 

  • Simmonds, N.W. 1965. Mutant expression in diploid potatoes. Heredity 20:65–72.

    Google Scholar 

  • Simmonds, N.W. 1966. Linkage to the S-locus in diploid potatoes. Heredity 21:473–479.

    Google Scholar 

  • Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517.

    Article  PubMed  CAS  Google Scholar 

  • Suttle, J.C., and J.F. Hultstrand. 1994. Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiol 105:891–896.

    PubMed  CAS  Google Scholar 

  • Soto, M., and A. Larqué-Saavedra. 1987. Abscisic acid accumulation in an edible drought resistant wild potato(Solanum cardiophyllum). Phyton 47:69–71.

    CAS  Google Scholar 

  • Taylor, I.B. 1991. Genetics of ABA synthesis.In: Davies, W.J., and H.G. Jones (eds.) Abscisic Acid: Physiology and Biochemistry, pp. 23–37. Bios Scientific Publishers, Oxford.

    Google Scholar 

  • Taylor, I.B., A. Burbidge, and A.J. Thompson. 2000. Control of abscisic acid synthesis. J Expt Bot 51:1563–1574.

    Article  CAS  Google Scholar 

  • Vartanian, N. 1996. Mutants as tools to understand cellular and molecular drought tolerance mechanisms. J Plant Growth Reg 20:125–134.

    Article  CAS  Google Scholar 

  • Waggoner, P.E,. and N.W. Simmonds. 1966. Stomata and transpiration of droopy potatoes. Plant Physiol 41:1268–1271.

    Article  PubMed  Google Scholar 

  • Wu, Y., J. Kuzma, E. Maréchal, R. Graeff, H.C. Lee, R. Foster, and N.-H. Chua 1997. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278:2126–2130.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. De Jong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jong, H.D., Kawchuk, L.M., Coleman, W.K. et al. Development and characterization of an adapted form ofdroopy, a diploid potato mutant deficient in abscisic acid. Amer J of Potato Res 78, 279–290 (2001). https://doi.org/10.1007/BF02875693

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875693

Key Words

Navigation