Skip to main content
Log in

Plant hormone mutants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The techniques used for the production and identification of plant hormone mutants are described. The properties used to classify these mutants into the broad synthesis and response categories are discussed, and the genetic considerations needed to allow their effective use in plant hormone research examined. A brief outline of significant work on gibberellin (GA), abscisic acid (ABA), auxin, ethylene, cytokinin and phytochrome mutants is provided. The molecular action of these genes is discussed where available and recent rapid advances made in Arabidopsis highlighted. Suggestions for future emphasis are made, particularly relating to an examination of the tissue and ontogenetic specificity of the plant hormone genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamse P, Jaspers PAPM, Bakker JA, Kendrick RE, Koornneef M (1988a) Photophysiology and phytochrome content of long-hypocotyl mutant and wild-type cucumber seedlings. Plant Physiol 87:264–268

    PubMed  CAS  Google Scholar 

  • Adamse P, Jaspers PAPM, Bakker JA, Wesselius JC, Heeringa GH, Kendrick RE, Koornneef M (1988b) Photophysiology of a tomato mutant deficient in labile phytochrome. J Plant Physiol 133:436–440

    Google Scholar 

  • Adamse P, Jaspers PAPM, Kendrick RE, Koornneef M (1987) Photomorphogenetic responses of a long-hypocotyl mutant of Cucumis sativus L. J Plant Physiol 127:481–491

    Google Scholar 

  • Adamse P, Kendrick RE, Koornneef M (1988c) Photomorphogenetic mutants of higher plants. Photochem Photobiol 48:833–841

    CAS  Google Scholar 

  • Ashton NW, Cove DJ (1990) Mutants as tools for the analytical dissection of cell differentiation in Physcomitrella patens gametophytes. In: Chopra RN, Bhatla SC (eds) Brypophyte development: Physiology and biochemistry. CRC Press, Boca Raton, pp 17–31

    Google Scholar 

  • Ashton NW, Cove DJ, Featherstone DR (1979) The isolation and physiological analysis of mutants of the moss, Physcomitrella patens, which overproduce gametophores. Planta 144:437–442

    CAS  Google Scholar 

  • Barendse GWM, Kepczynski J, Karssen CM, Koornneef M (1986) The role of endogenous gibberellins during fruit and seed development: Studies on gibberellin-deficient geno-types of Arabidopsis thaliana. Physiol Plant 67:315–319

    CAS  Google Scholar 

  • Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci USA 27:499–506

    PubMed  CAS  Google Scholar 

  • Beall FD, Morgan PW, Mander LN, Miller FR, Babb KH (1991) Genetic regulation of development in Sorghum bicolor. V. The ma R 3 allele results in gibberellin enrichment. Plant Physiol 95:116–125

    PubMed  CAS  Google Scholar 

  • Behringer FJ, Cosgrove DJ, Reid JB, Davies PJ (1990) The physical basis for altered stem elongation rates in internode length mutants of Pisum. Plant Physiol 94:166–173

    PubMed  CAS  Google Scholar 

  • Bensen RJ, Zeevaart JAD, (1990) Comparison of ent-kaurene synthetase A and B activities in cell-free extracts from young tomato fruits of wild-type and gib-1, gib-2, and gib-3 tomato plants. J Plant Growth Regul 9:237–242

    CAS  Google Scholar 

  • Bleeker AB, Estelle MA, Sommerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Google Scholar 

  • Bleeker AB (1991) Genetic analysis of ethylene response in Arabidopsis thaliana. In: Jenkins GI, Schuch W (eds) Molecular biology of plant development. The Company of Biologists Limited, Cambridge, pp 149–158

    Google Scholar 

  • Blonstein AD, Parry AD, Horgan R, King PJ (1991) A cytokininresistant mutant of Nicotiana plumbaginifolia is wilty. Planta 183:244–250

    CAS  Google Scholar 

  • Blonstein AD, Vahala T, Koornneef M, King PJ (1988) Plants regenerated from auxin-auxotrophic variants are inviable. Mol Gen Genet 215:58–64

    CAS  Google Scholar 

  • Campbell BR, Bonner BA (1986) Evidence for phytochrome regulation of gibberellin A20 3β-hydroxylation in shoots of dwarf (lele) Pisum sativum L. Plant Physiol 82:909–915

    Google Scholar 

  • Chandler PM (1988) Hormonal regulation of gene expression in the “slender” mutant of barley (Hordeum vulgare L). Planta 175:115–120

    CAS  Google Scholar 

  • Childs KL, Pratt LH, Morgan PW (1991) Genetic regulation of development in Sorghum bicolor. VI. The ma R 3 allele results in abnormal phytochrome physiology. Plant Physiol 97:714–719

    PubMed  CAS  Google Scholar 

  • Chory J, Peto CA, Ashbaugh M, Saganich R, Pratt L, Ausubel F (1989a) Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell 1:867–880

    PubMed  CAS  Google Scholar 

  • Chory J, Peto CA, Feinbaum R, Pratt L, Ausubel F (1989b) Arabidopsis thaliana mutant that develops as a lightgrown plant in the absence of light. Cell 58:991–999

    PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Sovonick-Dunford SA (1989) Mechanism of gibberellin-dependent stem elongation in peas. Plant Physiol 89:184–191

    PubMed  CAS  Google Scholar 

  • Croker SJ, Hedden P, Lenton JR, Stoddart JL (1990) Comparison of gibberellin in normal and slender barley seedlings. Plant Physiol 94:194–200

    PubMed  CAS  Google Scholar 

  • Deng X-W, Caspar T, Quail PH (1991) cop1: A regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5:1172–1182

    PubMed  CAS  Google Scholar 

  • Deng X-W, Matsui M, Wei N, Wagner D, Chu AM, Feldman D, Quail PH (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell 71:791–801

    PubMed  CAS  Google Scholar 

  • Devlin PF, Rood SB, Somers DE, Quail PH, Whitelam GC (1992) Photophysiology of the elongated internode (ein) mutant of Brassica rapa: ein mutant lacks a detectable phytochrome B-like polypeptide. Plant Physiol 100:1442–1447

    PubMed  CAS  Google Scholar 

  • Duckham SC, Linforth RST, Taylor IB (1991) Abscisic-acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell Environ 14:601–606

    CAS  Google Scholar 

  • Duckham SC, Taylor IB, Linforth RST, Al-Naieb RJ, Marples BA, Bowman WR (1989) The metabolism of cis-ABA-aldehyde by the wilty mutants of potato, pea and Arabidopsis thaliana. J Exp Bot 217:901–909

    Google Scholar 

  • Eselle MA, Sommerville CR (1987) Auxin resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 206:200–206

    Google Scholar 

  • Feldmann KA, Marks MD, Christianson ML, Quatrano RS (1989) A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243:1351–1354

    PubMed  CAS  Google Scholar 

  • Finkelstein RR, Somerville CR (1990) Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol 94:1172–1179

    PubMed  CAS  Google Scholar 

  • Firn RD (1986) Growth substance sensitivity: The need for clearer ideas, precise terms and purposeful experiments. Physiol Plant 67:267–272

    CAS  Google Scholar 

  • Frances S, White MJ, Edgerton MD, Jones AM, Elliott RC, Thompson WF (1992) Initial characterization of a pea mutant with light-independent photomorphogenesis. Plant Cell 4:1519–1530

    PubMed  CAS  Google Scholar 

  • Fujino DW, Burger DW, Bradford KJ (1989) Ineffectiveness of ethylene biosynthetic and action inhibitors to phenotypically revert the Epinastic mutant of tomato (Lycopersicon esculentum Mill.). J Plant Growth Regul 8:53–61

    CAS  Google Scholar 

  • Fujino DW, Burger DW, Yang SF, Bradford KJ (1988) Characterization of an ethylene overproducing mutant of tomato (Lycopersicon esculentum Mill, cultivar VFN8). Plant Physiol 88:774–779

    PubMed  CAS  Google Scholar 

  • Fujioka S, Yamane H, Spray CR, Gaskin P, MacMillan J, Phinney BO, Takahashi N (1988a) Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol 88:1367–1372

    PubMed  CAS  Google Scholar 

  • Fujioka S, Yamane H, Spray CR, Katsumi M, Phinney BO, Gaskin P, MacMillan J, Takahashi N (1988b) The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci USA 85:9031–9035

    PubMed  CAS  Google Scholar 

  • Fujioka S, Yamane H, Spray CR, Phinney BO, Gaskin P, MacMillan J, Takahashi N (1990) Gibberellin A3 is biosynthesized from gibberellin A20 via gibberellin A5 in shoots of Zea mays L. Plant Physiol 94:127–131

    PubMed  CAS  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis AB13 gene by positional cloning. Plant Cell 4:1251–1261

    PubMed  CAS  Google Scholar 

  • Goto N, Kumagai T, Koornneef M (1991) Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol Plant 83:209–215

    Google Scholar 

  • Grierson D, Purton ME, Knapp JE, Bathgate B (1987) Tomato ripening mutants. In: Thomas H, Grierson D (eds) Developmental mutants in higher plants. Cambridge University Press, Cambridge, pp 73–94

    Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    PubMed  CAS  Google Scholar 

  • Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346:284–287

    CAS  Google Scholar 

  • Hansen CE, Meins F, Aebi R (1987) Hormonal regulation of zeatin-riboside accumulation by cultured tobacco cells. Planta 172:520–525

    CAS  Google Scholar 

  • Hansen CE, Meins F, Milani A (1985) Clonal and physiological variation in the cytokinin content of tobacco-cell lines differing in cytokinin requirement and capacity for neoplastic growth. Differentiation 29:1–6

    CAS  Google Scholar 

  • Harberd NP, Freeling M (1989) Genetics of dominant gibberellinin-sensitive dwarfism in maize. Genetics 121:827–838

    PubMed  Google Scholar 

  • Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil IK (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev 6:609–618

    PubMed  CAS  Google Scholar 

  • Hedden P, Croker SJ (1992) Regulation of gibberellin biosynthesis in maize seedlings. In: Karssen CM, van Loon LC, Vreugdenhil D (eds) Progress in plant growth regulation. Kluwer Academic Publishers, Netherlands pp 534–544

    Google Scholar 

  • Heino P, Sanderson G, Lang V, Nordin K, Palva ET (1990) Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Theor Appl Gen 79:801–806

    CAS  Google Scholar 

  • Hickok LG (1985) Abscisic acid resistant mutant in the fern Cerotopteris: Characterization and genetic analysis. Can J Bot 63:1582–1585

    CAS  Google Scholar 

  • Hicks GR, Rayle DL, Lomax TL (1989) The diageotropica mutant of tomato lacks high specific activity auxin binding sites. Science 245:52–54

    PubMed  CAS  Google Scholar 

  • Ho T-HD, Shih SC, Kleinhofs A (1980) Screening for barley mutants with altered hormone sensitivity in their aleurone layers. Plant Physiol 66:153–157

    PubMed  CAS  Google Scholar 

  • Ingram TJ, Reid JB (1987) Internode length in Pisum: Biochemical expression of the le and na mutations in the slender phenotype. J Plant Growth Regul 5:235–243

    CAS  Google Scholar 

  • Ingram TJ, Reid JB, MacMillan J (1986) The quantitative relationship between gibberellin A1 and internode elongation in Pisum sativum L. Planta 168:414–420

    CAS  Google Scholar 

  • Ingram TJ, Reid JB, Murfet IC, Gaskin P, Willis CL, MacMillan J (1984) Internode length in Pisum. The Le gene controls the 3β-hydroxylation of gibberellin A20 to gibberellin A1 Planta 160:455–463

    CAS  Google Scholar 

  • Jolly CJ, Reid JB, Ross JJ (1987) Internode length in Pisum. Action of gene lw. Physiol Plant 69:489–498

    CAS  Google Scholar 

  • Karssen CM, Binkhorst-van der Swan DLC, Breckland ARE, Koornneef M (1983) Induction of dormancy during seed development by endogenous abscisic acid: Studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158–165

    CAS  Google Scholar 

  • Kelly MO, Bradford KJ (1986) Insensitivity of the diageotropica tomato mutant to auxin. Plant Physiol 82:713–717

    PubMed  CAS  Google Scholar 

  • Kendrick RE, Nagatani A (1991) Phytochrome mutants. Plant J 1:133–139

    Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    PubMed  CAS  Google Scholar 

  • Klee H, Estelle M (1991) Molecular genetic approaches to plant hormone biology. Annu Rev Plant Physiol Plant Mol Biol 42:529–551

    CAS  Google Scholar 

  • Klee H, Horsch R, Rogers S (1987) Agrobacterium mediated plant transformation and its further applications to plant biology. Ann Rev Plant Physiol 38:467–486

    CAS  Google Scholar 

  • Koornneef M (1986) Genetic aspects of abscisic acid. In: Blonstein AD, King PJ (eds) Plant gene research. A genetic approach to plant biochemistry. Springer-Verlag, Wien, pp 35–54

    Google Scholar 

  • Koornneef M (1991) Isolation of higher plant developmental mutants. In: Jenkins GI, Schuch W (eds) Molecular biology of plant development. The Company of Biologists Limited, Cambridge, pp 1–19

    Google Scholar 

  • Koornneef M, Cone JW, Dekens EG, O'Herne-Roberts EG, Spruit CJP, Kendrick RE (1985a) Photomorphogenic responses of long hypocotyl mutants of tomato. J Plant Physiol 120:153–165

    CAS  Google Scholar 

  • Koornneef M, Elgersma A, Hanhart CJ, Van Loenen Martinet EP, Van Rijn L, Zeevaart JAD (1985b) A gibberellin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65:33–39

    CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, Hilhorst HWM, Karssen CM (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol 90:463–469

    PubMed  CAS  Google Scholar 

  • Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, Karssen CM (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in nongerminating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 61:385–393

    CAS  Google Scholar 

  • Koornneef M, Rauling G, Karssen CM (1984) The isolation and characterization of abscisic acid insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    CAS  Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzenphysiol 100:147–160

    Google Scholar 

  • Lanahan MB, Ho T-HD (1988) Slender barley: A constitutive gibberellin-response mutant. Planta 175:107–114

    CAS  Google Scholar 

  • Last RL, Bissinger PH, Mahoney DJ, Radwanski ER, Fink GR (1991) Tryptophan mutants in Arabidopsis: The consequences of duplicated tryptophan synthase β genes. Plant Cell 3:345–358

    PubMed  CAS  Google Scholar 

  • Last RL, Fink GR (1988) Tryptophan-requiring mutants of the plant Arabidopsis thaliana. Science 240:305–310

    PubMed  CAS  Google Scholar 

  • Law DM (1987) Gibberellin-enhanced indole-3-acetic acid biosynthesis: D-tryptophan as the precursor of indole-3-acetic acid. Physiol Plant 70:626–632

    CAS  Google Scholar 

  • Lawrence NL, Ross JJ, Mander LN, Reid JB (1992) Internode length in Pisum. Mutants lk, lka, and lkb do not accumulate gibberellins. J Plant Growth Regulation 11:35–37

    CAS  Google Scholar 

  • Lenton JR, Hedden P, Gale MD (1987) Gibberellin insensitivity and depletion in wheat-consequences for development. In: Hoad GV, Lenton JR, Jackson MB, Atkin BK (eds) Hormone action in plant development—a critical appraisal. Butterworths, London, pp 145–160

    Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axrl mutants of Arabidopsis. Plant Cell 2:1071–1080

    PubMed  CAS  Google Scholar 

  • Löpez-Juez E, Buurmeijer WF, Heeringa GH, Kendrick RE, Wesselius JC (1990a) Response of light-grown wild-type and long hypocotyl mutant cucumber plants to end-of-day far-red light. Photochem Photobiol 52:143–149

    Google Scholar 

  • López-Juez E, Kobayashi M, Kamiya Y, Kendrick RE (1993) A possible involvement of gibberellins in the action of phytochrome-B: A study using the cucumber lh mutant. Plant Cell Physiol 34:S71

    Google Scholar 

  • López-Juez E, Nagatani A, Buurmeijer WF, Peters JL, Furuya M, Kendrick RE, Wesselius JC (1990b) Response of lightgrown wild-type and aurea-mutant tomato plants to end of-day far-red light. J Photochem Photobiol B Biol 4:391–405

    Google Scholar 

  • López-Juez E, Nagatani A, Tomizawa K-I, Deak M, Kern R, Kendrick RE, Furuya M (1992) The cucumber long hypocotyl mutant lacks a light-stable PHYB-like phytochrome. Plant Cell 4:241–251

    PubMed  Google Scholar 

  • McCarty DR, Carson CB, Stinard PS, Robertson DS (1989) Molecular analysis of viviparous-1: An abscisic acidinsensitive mutant of maize. Plant Cell 1:523–532

    PubMed  CAS  Google Scholar 

  • McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil LK (1991) The viviparous-1 developmental gene of maize encodes a novel transcription activator. Cell 66:895–905

    PubMed  CAS  Google Scholar 

  • McCormac AC, Whitelam GC, Boylan MT, Quail PH, Smith H (1992) Contrasting responses of etiolated and lightadapted seedlings to red:far-red ratio: A comparison of wild type, mutant and transgenic plants has revealed differential functions of members of the phytochrome family. J Plant Physiol 140:707–714

    CAS  Google Scholar 

  • MacMillan J, Phinney BO (1987) Biochemical genetics and the regulation of stem elongation by gibberellins. In: Cosgrove DJ, Knievel DP (eds) Physiology of cell expansion during plant growth. American Society of Plant Physiology, Rockville, pp 156–171

    Google Scholar 

  • Maher EP, Martindale SJB (1980) Mutants of Arabidopsis thaliana with altered response to auxin and gravity. Biochem Genet 18:1041–1053

    PubMed  CAS  Google Scholar 

  • Medford JI, Horgan R, El-Sawi Z, Klee HJ (1989) Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1:403–413

    PubMed  CAS  Google Scholar 

  • Meins F, Foster R (1986) A cytokinin mutant derived from cultured tobacco cells. Dev Genet 7:159–165

    PubMed  CAS  Google Scholar 

  • Mita T, Katsumi M (1986) Gibberellin control of microtubule arrangement in the mesocotyl epidermal cells of the d 5 mutant of Zea mays L. Plant Cell Physiol 27:651–659

    Google Scholar 

  • Mochizuki T, Kamimura S (1985) Photoselective method for selection of hp at the cotyledon stage. Tomato Genet Coop Rpt 35:12–13

    Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Rabakoarihanta A, Kim S-G (1980) Cytokinin autonomy in tissue cultures of Phaseolus: A genotype-specific and heritable trait. Genetics 94:675–686

    PubMed  Google Scholar 

  • Moore R, Smith JD (1985) Graviresponsiveness and abscisicacid content of roots of carotenoid-deficient mutants of Zea mays L. Planta 164:126–128

    PubMed  CAS  Google Scholar 

  • Muller J-E, Goujaud J, Caboche M (1985) Isolation in vitro of naphthaleneacetic acid-tolerant mutants of Nicotiana tabaccum, which are impaired in root morphogenesis. Mol Gen Genet 199:194–200

    CAS  Google Scholar 

  • Murfet IC, Reid JB (1993) Developmental mutants. In: Casey R, Davies DR (eds) Peas—genetics, molecular biology and biotechnology. CAB International, Wallingford, UK, pp. 165–216

    Google Scholar 

  • Nagatani A, Chory J, Furuya M (1991a) Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far red light treatments. Plant Cell Physiol 32:1119–1122

    CAS  Google Scholar 

  • Nagatani A, Kay SA, Deak M, Chua N-H, Furuya M (1991b) Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proc Natl Acad Sci USA 88:5207–5211

    PubMed  CAS  Google Scholar 

  • Nagatani A, Reid JB, Ross JJ, Dunnewijk A, Furuya M (1990) Internode length in Pisum. The response to light quality, and phytochrome type I and II levels in lv plants. J Plant Physiol 135:667–674

    CAS  Google Scholar 

  • Nambara E, Satoshi N, McCourt P (1992) A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J 2:435–441

    CAS  Google Scholar 

  • Neill SJ, Horgan R (1985) Abscisic acid production and water relations in wilty tomato mutants subjected to water deficiency. J Exp Bot 36:1222–1231

    CAS  Google Scholar 

  • Neill SJ, Horgan R, Parry AD (1986) The carotenoid and abscisic acid content of viviparous kernels and seedlings of Zea mays L. Planta 169:87–96

    CAS  Google Scholar 

  • Nick P, Furuya M (1993) Phytochrome dependent decrease of gibberellin-sensitivity. A case study of cell extension growth in the mesocotyl of japonica and indica type rice cultivars. Plant Growth Regulation 12:195–206

    CAS  Google Scholar 

  • Oeller PW, Min-Wong L, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437–439

    PubMed  CAS  Google Scholar 

  • Ozga JA, Brenner ML, Reinecke DM (1992) Seed effects on gibberellin metabolism in pea pericarp. Plant Physiol 100:88–94

    PubMed  CAS  Google Scholar 

  • Pao C-I, Morgan PW (1986) Genetic regulation of development in Sorghum bicolor. I. Role of the maturity genes. Plant Physiol 82:575–580

    PubMed  Google Scholar 

  • Parks BM, Jones AM, Adamse P, Koornneef M, Kendrick RE, Quail PH (1987) The aurea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome. Plant Mol Biol 9:97–107

    CAS  Google Scholar 

  • Parks BM, Quail PH (1991) Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3:1177–1186

    PubMed  CAS  Google Scholar 

  • Parks BM, Quail PH (1993) hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5:39–48

    PubMed  CAS  Google Scholar 

  • Parks BM, Shanklin J, Koornneef M, Kendrick RE, Quail PH (1989) Immunochemically detectable phytochrome is present at normal levels but is photochemically nonfunctional in the hy1 and hy2 long hypocotyl mutants of Arabidopsis. Plant Mol Biol 12:425–437

    CAS  Google Scholar 

  • Parry AD, Blonstein AD, Babiano MJ, King PJ, Horgan R (1991) Abscisic-acid metabolism in a wilty mutant of Nicotiana plumbaginifolia. Planta 183:237–243

    CAS  Google Scholar 

  • Parry AD, Griffiths A, Horgan R (1992) Abscisic acid biosynthesis in roots. II. The effects of water-stress in wild-type and abscisic-acid-deficient mutant (notabilis) plants of Lycopersicon esculentum. Planta 187:192–197

    CAS  Google Scholar 

  • Parry AD, Horgan R (1992a) Abscisic acid biosynthesis in higher plants. In: Karssen CM, van Loon LC, Vreugdenhil D (eds) Progress in plant growth regulation. Kluwer Academic Publishers, Netherlands, pp 160–172

    Google Scholar 

  • Parry AD, Horgan R (1992b) Abscisic acid biosynthesis in roots. I. The identification of potential abscisic acid precursors, and other carotenoids. Planta 187:185–191

    CAS  Google Scholar 

  • Parry AD, Neill SJ, Horgan R (1988) Xanthoxin levels and metabolism in the wild-type and wilty mutants of tomato. Planta 173:397–404

    CAS  Google Scholar 

  • Peng J, Harberd NP (1993) Derivative alleles of the Arabidopsis gibberellin-insensitive (gai) mutation confer a wild-type phenotype. Plant Cell 5:351–360

    PubMed  CAS  Google Scholar 

  • Perez AT, Marsh HV, Lachman WH (1974) Physiology of the yellow-green 6 gene in tomato. Plant Physiol 53:192–197

    PubMed  CAS  Google Scholar 

  • Phinney BO (1956) Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc Natl Acad Sci USA 42:186–189

    Google Scholar 

  • Phinney BO (1961) Dwarfing genes in Zea mays and their relation to the gibberellins. In: Klein RM (ed) Plant growth regulation. Iowa State College Press, Ames, pp 489–501

    Google Scholar 

  • Phinney BO (1984) Gibberellin A1, dwarfism and the control of shoot elongation in higher plants. In: Crozier A, Hillman JR (eds) The biosynthesis and metabolism of plant hormones. Society of Experimental Biology Seminar Series 23. Cambridge University Press, Cambridge, pp 17–41

    Google Scholar 

  • Phinney BO, Freeling M, Robertson DS, Spray CR, Silverthorne J (1986) Dwarf mutants of maize — the gibberellin pathway and its molecular future. In: Bopp M (ed) Plant growth substances, 1985. Springer-Verlag, Berlin, Heidelberg, pp 55–64

    Google Scholar 

  • Phinney BO, Spray C (1982) Chemical genetics and the gibberellin pathway in Zea mays L. In: Wareing PF (ed) Plant growth substances, 1982. London Academic Press, London, pp 101–110

    Google Scholar 

  • Pickett FB, Wilson AK, Estelle M (1990) The auxl mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462–1466

    PubMed  CAS  Google Scholar 

  • Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D (1993) Altered fruit ripening and leaf senescence in tomato expressing an antisense ethylene-forming enzyme transgene. Plant J 3:469–481

    CAS  Google Scholar 

  • Potts WC, Reid JB, Murfet IC (1985) Internode length in Pisum. Gibberellins and the slender phenotype. Physiol Plant 63:357–364

    CAS  Google Scholar 

  • Quail PH (1991) Phytochrome: A light-activated molecular switch that regulates plant gene expression. Ann Rev Genet 25:389–409

    PubMed  CAS  Google Scholar 

  • Quail PH, Gatz C, Hershey HP, Jones AM, Lissemore JL, Parks BM, Sharrock RA, Barker RF, Idler K, Murrey MG, Koornneef M, Kendrick RE (1987) Molecular biology of phytochrome. In: Furuya M (ed) Phytochrome and photoregulation in plants. Academic Press, Tokyo, pp 23–37

    Google Scholar 

  • Quarrie SA (1982) Droopy: A wilty mutant of potato deficient in abscisic acid. Plant Cell Environ 5:23–26

    CAS  Google Scholar 

  • Raskin I, Ladyman JAR (1988) Isolation and characterization of a barley mutant with abscisic-acid-insensitive stomata. Planta 173:73–78

    Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    PubMed  CAS  Google Scholar 

  • Reid JB (1982) Flowering in Pisum: Effect of gene Hr on spectral sensitivity. Crop Sci 22:266–268

    Google Scholar 

  • Reid JB (1986a) Internode length in Pisum. Three urther loci, lh, ls and lk. Ann Bot 57:577–592

    Google Scholar 

  • Reid JB (1986b) Gibberellin mutants. In: Blonstein AD, King PJ (eds) Plant gene research. A genetic approach to plant biochemistry. Springer-Verlag, Wien, pp 1–34

    Google Scholar 

  • Reid JB (1990) Gibberellin synthesis and sensitivity mutants in Pisum. In: Pharis RP, Rood SB (eds) Plant growth substances 1988, Springer-Verlag, New York pp 74–83

    Google Scholar 

  • Reid JB, Kasan O, Ross JJ (1990) Internode length in Pisum: Gibberellins and the response to far-end-rich light. J Plant Physiol 137:46–52

    CAS  Google Scholar 

  • Reid JB, Murfet IC (1977) Flowering in Pisum: The effect of light quality on genotype lf e Sn Hr. J Exp Bot 28:1357–1364

    Google Scholar 

  • Reid JB, Murfet IC, Potts WC (1983) Internode length in Pisum. II. Additional information on the relationship and action of loci Le, La, Cry, Na and Lm. J Exp Bot 34:349–364

    Google Scholar 

  • Reid JB, Ross JJ (1988a) Internode length in Pisum. Further studies on the ‘micro’ gene, lm. Physiol Plant 72:547–554

    CAS  Google Scholar 

  • Reid JB, Ross JJ (1988b) Internode length in Pisum. A new gene, lv, conferring an enhanced response to gibberellin A1. Physiol Plant 72:595–604

    CAS  Google Scholar 

  • Reid JB, Ross JJ (1989) Internode length in Pisum. Two further gibberellin-insensitivity genes, lka and lkb. Physiol Plant 75:81–88

    CAS  Google Scholar 

  • Reid JB, Ross JJ (1993) A mutant-based approach, using Pisum sativum, to understanding plant growth. Int J Plant Sci 154:22–34

    Google Scholar 

  • Reid JB, Ross JJ, Swain SM (1992) Internode length in Pisum. A new slender mutant with elevated levels of C19 gibberellins. Planta 188:462–467

    CAS  Google Scholar 

  • Roberts JA, Grierson D, Tucker GA (1987) Genetic variants as aids to examine the significance of ethylene in development. In: Hoad GV, Lenton JR, Jackson MB, Atkin BK (eds) Hormone action in plant development—a critical appraisal. Butterworths, London, pp 107–118

    Google Scholar 

  • Robichaud CS, Wong J, Sussex IM (1980) Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Dev Genet 1:325–330

    CAS  Google Scholar 

  • Rock CD, Zeevaart JAD (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88:7496–7499

    PubMed  CAS  Google Scholar 

  • Romano CP, Cooper ML, Klee HJ (1993) Uncoupling auxin and ethylene effects in transgenic tobacco and Arabidopsis plants. Plant Cell 5:181–189

    PubMed  CAS  Google Scholar 

  • Romano C, Hein M, Klee H (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev. 5:438–446

    PubMed  CAS  Google Scholar 

  • Rood SB, Pearce D, Williams PN, Pharis RP (1989) A gibberellin-deficient Brassica mutant—rosette. Plant Physiol 89:482–487

    PubMed  CAS  Google Scholar 

  • Rood SB, Williams PH, Pearce D, Murofushi N, Mander LN, Pharis RP (1990) A mutant gene that increases gibberellin production in Brassica. Plant Physiol 93:1168–1174

    PubMed  CAS  Google Scholar 

  • Ross JJ, Davies NW, Reid JB, Murfet IC (1990) Internode length and leaf growth in Lathyrus odoratus L. Effects of genes l and lb on gibberellin metabolism and levels. Physiol Plant 79:453–458

    CAS  Google Scholar 

  • Ross JJ, Reid JB (1986) Internode length in Pisum. The involvement of ethylene with the gibberellin-insensitive erectoides phenotype. Physiol Plant 67:673–679

    CAS  Google Scholar 

  • Ross JJ, Reid JB (1987) Internode length in Pisum. A new allele at the le locus. Ann Bot 59:107–109

    CAS  Google Scholar 

  • Ross JJ, Reid JB (1989) Internode length in Pisum. Biochemical expression of the le gene in darkness. Physiol Plant 76:164–172

    CAS  Google Scholar 

  • Ross JJ, Reid JB, Dungey HS (1992) Ontogenetic variation in levels of gibberellin A1 in Pisum. Implications for the control of stem elongation. Planta 186:166–171

    CAS  Google Scholar 

  • Ross JJ, Reid JB, Gaskin P, MacMillan J (1989) Internode length in Pisum. Estimation of GA1 levels in genotypes Le, le and le d.Physiol Plant 76:173–176

    CAS  Google Scholar 

  • Ross JJ, Reid JB, Swain SM (1993) Control of stem elongation by gibberellin A1: Evidence from genetic studies including the slender mutant, sln. Aust J Plant Physiol 20:585–595

    CAS  Google Scholar 

  • Scott IM (1988) Effects of gibberellin on shoot development in the dgt mutant of tomato. Ann Bot 61:389–392

    CAS  Google Scholar 

  • Sharrock RA, Parks BM, Koornneef M, Quail PH (1988) Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato. Mol Gen Genet 213:9–14

    CAS  Google Scholar 

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:1745–1757

    PubMed  CAS  Google Scholar 

  • Smith VA, Knott CJ, Gaskin P, Reid JB (1992) The distribution of gibberellins in vegetative tissues of Pisum sativum L. Biological and biochemical consequences of the le mutation I. Plant Physiol 99:368–371

    PubMed  CAS  Google Scholar 

  • Somers DE, Sharrock RA, Tepperman JM, Quail PH (1991) The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B. Plant Cell 3:1263–1274

    PubMed  CAS  Google Scholar 

  • Spray C, Phinney BO, Gaskin P, Gilmour SJ, MacMillan J (1984) Internode length in Zea mays L. The dwarf-1 mutant controls the 3β-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160:464–468

    CAS  Google Scholar 

  • Stoddart JL (1984) Growth and gibberellin-A1 metabolism in normal and gibberellin-insensitive (Rht 3) wheat (Triticum aestivum L.) seedlings. Planta 161:432–438

    CAS  Google Scholar 

  • Su W, Howell SH (1992) A single genetic locus, ckr1, defines Arabidopsis mutants in which root growth is resistant to low concentrations of cytokinin. Plant Physiol 99:1569–1574

    PubMed  CAS  Google Scholar 

  • Sun T, Goodman HM, Ausubel FM (1992) Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell 4:119–128

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Kurogochi S, Murofushi N, Ota Y, Takahashi N (1981) Seasonal changes of GA1, GA19 and abscisic acid in three rice cultivars. Plant Cell Physiol 22:1085–1093

    CAS  Google Scholar 

  • Swain SM, Reid JB (1992) Internode length in Pisum. A new allele at the Lh locus. Physiol Plant 86:124–130

    Google Scholar 

  • Swain SM, Reid JB, Ross JJ (1993) Seed development in Pisum. The lh iallele reduces gibberellin levels in developing seeds, and increases seed abortion. Planta 191:482–488

    CAS  Google Scholar 

  • Tal M, Nevo Y (1973) Abnormal stomatal behavior and root resistance, and hormonal imbalance in three wilty mutants of tomato. Biochem Genet 8:291–300

    PubMed  CAS  Google Scholar 

  • Talon M, Koornneef M, Zeevaart JAD (1990) Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc Natl Acad Sci USA 87:7983–7986

    PubMed  CAS  Google Scholar 

  • Turner JE, Mok MC, Mok DWS (1985) Zeatin metabolism in fruits of Phaseolus. Comparison between embryos, seed coat and pod tissues. Plant Physiol 79:321–322

    PubMed  CAS  Google Scholar 

  • Wang TL (1987) Cytokinin mutants. In: Horgan R, Jeffcoat B (eds) Cytokinins—plant hormones in search of a role, Monograph 14. British Plant Growth Regulator Group, Bristol, pp 55–67

    Google Scholar 

  • Wang TL, Donkin ME, Martin ES (1984a) The physiology of a wilty pea: Abscisic acid production under water stress. J Exp Bot 351:1222–1232

    Google Scholar 

  • Wang TL, Futers TS, McGeory F, Cove DJ (1984b) Moss mutants and the analysis of cytokinin metabolism. In: Crozier A, Hillman JR (eds) The biosynthesis and metabolism of plant hormones. Society of Experimental Biology Seminar Series 23. Cambridge University Press, Cambridge, pp 135–164

    Google Scholar 

  • Wang TL, Horgan R, Cove DJ (1981) Cytokinins from the moss Physcomitrella patens. Plant Physiol 68:735–738

    PubMed  CAS  Google Scholar 

  • Waycott W, Smith VA, Gaskin P, MacMillan J, Taiz L (1991) The endogenous gibberellins of dwarf mutants of lettuce. Plant Physiol 95:1169–1173

    PubMed  CAS  Google Scholar 

  • Weller JL, Reid JB (1993) Photoperiodism and photocontrol of stem elongation in two photomorphogenic mutants of Pisum sativum L. Planta 189:15–23

    Google Scholar 

  • Whitelam GC, Smith H (1991) Retention of phytochrome-mediated shade avoidance responses in phytochromedeficient mutants of Arabidopsis, cucumber, and tomato. J Plant Physiol 139:119–125

    CAS  Google Scholar 

  • Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383

    PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Talon M (1992) Gibberellin mutants in Arabidopsis thaliana. In: Karssen CM, van Loon LC, Vreugenhil D (eds) Progress in plant growth regulation. Kluwer Academic Publishers, Netherlands, pp 34–42

    Google Scholar 

  • Zobel RW (1973) Some physiological characteristics of the ethylene-requiring tomato mutant diagetropica. Plant Physiol 52:383–389

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, J.B. Plant hormone mutants. J Plant Growth Regul 12, 207–226 (1993). https://doi.org/10.1007/BF00213038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00213038

Keywords

Navigation