Skip to main content
Log in

Low temperature suspension polymerization of methyl methacrylate for the preparation of high molecular weight poly(methyl methacrylate)/silver nanocomposite microspheres

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In order to prepare high molecular weight poly(methyl methacrylate) (PMMA)/silver nanocomposite microspheres, methyl methacrylate was suspension-polymerized in the presence of silver nanoparticles at low temperature with 2,2′-azobis(2,4-dimethylvaleronitrile) as an initiator. The rate of conversion was increased by increasing the initiator concentration. When silver nanoparticles were added, the rate of polymerization decreased slightly. High monomer conversion (about 85 %) was obtained in spite of low polymerization temperature of 30°C. Under controlled conditions, PMMA/silver microspheres with various number-average degrees of polymerization (6,000–37,000) were prepared. Morphology studies revealed that except for normal suspension microspheres with a smooth surface, a golf ball-like appearance of the microspheres was observed, due to the migration and aggregation of the hydrophilic silver nanoparticles at the sublayer beneath the microsphere’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Charnley,J. Bone, J. Surg.,42B, 28 (1960).

    Google Scholar 

  2. G. Lewis,J. Biomed. Mater. Res.,38, 155 (1997).

    Article  CAS  Google Scholar 

  3. J. A. Planell, M. M. Vila, F. J. Gil, and F. C. M. Driessens in “Acrylic Bone Cements, Encyclopedic Handbook of Biomaterials and Bioengineering”, (D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwartz Eds.), pp.879–921, Marcel Dekker, New York, 1997.

    Google Scholar 

  4. E. J. Harper, M. Braden, and W. Bonfield, 7th Euro. Conf. Composite Mater., p.519, 1996.

  5. H. W. Coover and J. M. McIntyre Jr. in “Encyclopedia of Polymer Science and Engineering”, (H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz Eds.), Vol. 1, pp.234–263, John Wiley and Sons, New York, 1985.

    Google Scholar 

  6. O. Nuyken and G. Lettermann in “Handbook of Polymer Synthesis”, (H. R. Kricheldorf Ed.), Part A, pp.223–336, Marcel Dekker, New York, 1992.

    Google Scholar 

  7. K. H. Kim, W. H. Jo, J. Y. Jho, M. S. Lee, and G. T. Lim,Fibers and Polymers,4, 97 (2003).

    Article  CAS  Google Scholar 

  8. J. W. Cho, S. H. Lee, J. H. So, J. Y. Jaung, and K. J. Yoon,Fibers and Polymers,5, 239 (2004).

    CAS  Google Scholar 

  9. J. L. Luna-Xavier, E. Bourgeat-Lami, and A. Guyot,Colloid Polym. Sci.,279, 947 (2001).

    Article  CAS  Google Scholar 

  10. J. Lee and M. Sena,Colloid Polym. Sci.,273, 76 (1995).

    Article  CAS  Google Scholar 

  11. M. S. Fleming, T. K. Mandal, and D. R. Walt,Chem. Mater.,13, 2210 (2001).

    Article  CAS  Google Scholar 

  12. F. Tiarks, K. Landfester, and M. Antonietti,Langmuir,17, 5775 (2001).

    Article  CAS  Google Scholar 

  13. B. Erdem, E. D. Sudol, V. L. Dimonie, and M. El-Aasser,J. Polym. Sci., Polym. Chem.,38, 4419 (2000).

    Article  CAS  Google Scholar 

  14. G. C. Carotenuto, Y. S. Her, and E. Matijevic,Ind. Eng. Chem. Res.,35, 2929 (1996).

    Article  CAS  Google Scholar 

  15. M. Lira-Cantú and P. Gómez-Romero,Chem. Mater.,10, 698 (1998).

    Article  Google Scholar 

  16. Y. Wang and N. Herron,Chem. Phys. Lett.,200, 71 (1992).

    Article  CAS  Google Scholar 

  17. R. K. Hailstone,J. Phys. Chem.,99, 4414 (1995).

    Article  CAS  Google Scholar 

  18. T. Sun and K. Seff,Chem. Rev.,94, 857 (1994).

    Article  CAS  Google Scholar 

  19. H. Tada, K. Teranishi, Y. Inubushi, and S. Ito,Langmuir,16, 3304 (2000).

    Article  CAS  Google Scholar 

  20. U. Nickel, A. zu Castell, K. Pöppl, and S. Schneider,Langmuir,16, 9087 (2000).

    Article  CAS  Google Scholar 

  21. T. Pal,J. Chem. Educ.,71, 679 (1994).

    Article  CAS  Google Scholar 

  22. Y. Iwata,Zeolite News Lett.,13, 8 (1996).

    Google Scholar 

  23. A. Oya,J. Antibac. Antifungal. Agents (Jpn),24, 429 (1996).

    Google Scholar 

  24. D. W. Hatchett, M. Josowicz, J. Janata, and D. R. Baer,Chem. Mater.,11, 2989 (1999).

    Article  CAS  Google Scholar 

  25. C. J. Huang, C. C. Yen, and T. C. Chang,J. Appl. Polym. Sci.,42, 2237 (1991).

    Article  CAS  Google Scholar 

  26. Y. Gotoh, R. Igarashi, Y. Ohkoshi, M. Nagura, K. Akamatsu, and S. Deki,J. Mater. Chem.,10, 2548 (2000).

    Article  CAS  Google Scholar 

  27. Y. J. Zhu, Y. T. Qian, X. J. Li, and M. W. Zhang,Nanostruct. Mater.,10, 673 (1998).

    Article  CAS  Google Scholar 

  28. Y. Yin, X. Xu, X. Ge, and Z. Zhang,Radiation Physics and Chemistry,53, 567 (1998).

    Article  CAS  Google Scholar 

  29. E. Duguet, M. Abboud, F. Morvan, P. Maheu, and M. Fontanille,Macromol. Symp.,151, 365 (2000).

    Article  CAS  Google Scholar 

  30. X. Huang and W. J. Brittain,Macromolecules,34, 3255 (2001).

    Article  CAS  Google Scholar 

  31. J. W. Shim, J. W. Kim, S. H. Han, I. S. Chang, H. K. Kim, H. H. Kang, O. S. Lee, and K. D. Suh,Colloid Surf. A,207, 105 (2002).

    Article  CAS  Google Scholar 

  32. J. B. Jun and K. D. Suh,J. Appl. Polym. Sci.,90, 458 (2003).

    Article  CAS  Google Scholar 

  33. J. M. Hwu, T. H. Ko, W. T. Yang, J. C. Lin, G. J. Jiang, W. Xie, and W. P. Pan,J. Appl. Polym. Sci.,91, 101 (2004).

    Article  CAS  Google Scholar 

  34. J. H. Yeum, Q. Sun, and Y. Deng,Macromol. Mater. Eng.,290, 78 (2005).

    Article  CAS  Google Scholar 

  35. T. Nishikawa, M. Kamigaito, and M. Sawamoto,Macromolecules,32, 2204 (1999).

    Article  CAS  Google Scholar 

  36. G. Polacco, M. Palla, and D. Semino,Polym. Int.,48, 392 (1999).

    Article  CAS  Google Scholar 

  37. W. S. Lyoo, S. K. Noh, J. H. Yeum, G. C. Kang, H. D. Ghim, J. Lee, and B. C. Ji,Fibers and Polymers,5, 75 (2004).

    Article  CAS  Google Scholar 

  38. M. Kurata and Y. Tsunashima in “Polymer Handbook”, 3rd ed. (J. Brandrup and E. H. Immergut Eds.), p.VII/13, John Wiley and Sons, New York, 1989.

    Google Scholar 

  39. G. Odian in “Principles of Polymerization”, Wiley-Interscience, New York, 1991.

    Google Scholar 

  40. J. H. Yeum, B. C. Ji, S. K. Noh, H. Y. Jeon, J. W. Kwak, and W. S. Lyoo,Polymer,45, 4037 (2004).

    Article  CAS  Google Scholar 

  41. W. S. Lyoo, C. S. Park, J. H. Yeum, B. C. Ji, C. J. Lee, S. S. Lee, and J. Y. Lee,Colloid Polym. Sci.,280, 1075 (2002).

    Article  CAS  Google Scholar 

  42. J. H. Yeum, B. C. Ji, C. J. Lee, J. Y. Lee, S. S. Lee, S. S. Kim, J. H. Kim, and W. S. Lyoo,J. Polym. Sci., Polym. Chem.,40, 1103 (2002).

    Article  CAS  Google Scholar 

  43. W. S. Lyoo, H. D. Ghim, J. H. Kim, S. K. Noh, J. H. Yeum, B. C. Ji, H. T. Jung, and J. Blackwell,Macromolecules,36, 5428 (2003).

    Article  CAS  Google Scholar 

  44. B. C. Ji, G. C. Kang, H. D. Ghim, J. P. Kim, H. C. Kim, and W. S. Lyoo,J. Korean Fiber Soc.,38, 373 (2001).

    CAS  Google Scholar 

  45. T. Vermeulen, G. M. Williams, and G. E. Langlois,Chem. Eng. Prog.,51, 85 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Hyun Yeum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeum, J.H., Ghim, H.D. & Deng, Y. Low temperature suspension polymerization of methyl methacrylate for the preparation of high molecular weight poly(methyl methacrylate)/silver nanocomposite microspheres. Fibers Polym 6, 277–283 (2005). https://doi.org/10.1007/BF02875662

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875662

Keywords

Navigation