Skip to main content

Advertisement

Log in

Effect of silver nanoparticle on the properties of poly(methyl methacrylate) nanocomposite network made by in situ photoiniferter-mediated photopolymerization

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Here we report preparation and characterization of poly(methyl methacrylate)/silver nanoparticles (PMMA/AgNPs) nanocomposite networks prepared via in situ photoiniferter-mediated photopolymerization (in situ PMP) using tetraethylthiuram disulphide (TED) as photoiniferter and 2,2-dimethoxy-2-phenylacetophenone (DMPA) as photoinitiator. Photopolymerization was performed in the presence of allyl methacrylate, as crosslinking agent, and various amount of silver nanoparticles (AgNPs). AgNPs were synthesized via chemical reduction of silver nitrate with t-BuONa-activated sodium hydride in tetrahydrofuran. The degree of monomer conversion (DC%) during polymerization was followed quantitatively via Fourier transform infrared spectroscopy. DC% of nanocomposite networks slightly increased with AgNPs content. Moreover, differential scanning calorimetry results disclosed a decrease in glass transition temperature (T g) of the nanocomposite networks in comparison with the pure polymer network, suggesting the plasticizing effect of AgNPs. Swelling behaviour was also measured in water and ethanol/water (3/1, v/v) solution at 37 ± 1°C after 30 days. The enhanced swelling ratio for nanocomposite networks with increase in the AgNPs content suggested the potential role of AgNPs in photo-crosslinking reactions. The flexural strength and modulus values resulted from three-point bending method revealed an improvement in mechanical properties of the nanocomposites in comparison with pure PMMA networks. The mechanical behaviour observations were rationalized based on the field emission scanning electron microscopy micrographs from the fractured surfaces of the nanocomposite networks. Finally, thermogravimetric analysis showed that while the AgNPs catalyse the degradation in the early stages, they subsequently act as a retardant agent against thermal degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ladha K and Shah D 2011 J. Indian. Prosthodont. Soc. 11 215

    Article  Google Scholar 

  2. Peyton F A 1975 Dent. Clin. N. Am. 19 211

    Google Scholar 

  3. Whitters C J, Strang R, Brown D, Clarke R L, Curtis R V, Hatton A J et al 1999, J. Dent. 27 401

    Article  Google Scholar 

  4. Ivar A M, Moorhead J E and Dahl J E 1999 Acta. Odontol. Scan. 57 257

    Article  Google Scholar 

  5. Balan L, Schneider R and Lougnot D J 2008 Prog. Org. Coat. 62 351

    Article  Google Scholar 

  6. Balan L, Malval J P, Schneider R and Burget D 2007 Mater. Chem. Phys. 104 417

    Article  Google Scholar 

  7. Stafford G D and Smith D C 1970 Brit. Dent. J. 128 442

    Article  Google Scholar 

  8. Smith D C 1962 J. Prosthet. Dent. 12 1066

    Article  Google Scholar 

  9. Meerburg F, Hennebel T, Vanhaecke L, Verstraete W and Boon N. 2012 Microb. Biotechnol. 5 388

    Article  Google Scholar 

  10. Grinou A, Bak H, Yun Y S and Jin H J 2012 J. Disper. Sci. Technol. 33 750

    Article  Google Scholar 

  11. Kassaee M Z, Akhavan A, Sheikh N and Sodagar A 2008 J. Appl. Poly. Sci. 110 1699

    Article  Google Scholar 

  12. Jiang H, Manolache S, Lee Wong A C and Denes F S 2014 J. Appl. Poly. Sci. 93 1411

    Article  Google Scholar 

  13. Afanasev D S, Yakovina O A, Kuznetsova A S and Listsyn A S 2012 Catal. Commun. 22 43

    Article  Google Scholar 

  14. Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E et al 2004 Biomaterials 25 4383

    Article  Google Scholar 

  15. She W J 2004 Dent. Mater. 27 176

    Google Scholar 

  16. Radetić M, IIic V, Vodnik V, Dimitrijevic S, Jovancic P, Saponic Z et al 2008 Polym. Advan. Technol. 19 1816

    Article  Google Scholar 

  17. Vimala K, Murali Mohan Y, Samba Sivudu K, Varaprasad K, Ravindra S, Narayana Reddy N et al 2010 Colloid. Surf. B 76 248

    Article  Google Scholar 

  18. Silver S and Phung L T 1996 Annu. Rev. Microbiol. 50 753

    Article  Google Scholar 

  19. Chattopadhyay D, Pandra S S and Raju K V S N 2005 Prog. Org. Coat. 54 10

    Article  Google Scholar 

  20. Moszner N and Salz U 2001 Prog. Poly. Sci. 26 535

    Article  Google Scholar 

  21. Harris B P and Metters A T 2006 Macromolecules 39 2764

    Article  Google Scholar 

  22. Rahane S B, Kelbey S M and Metters A T 2005 Macromolecules 38 8202

    Article  Google Scholar 

  23. Rahane S B, Metters A T and Kilbey S M 2006 Macromolecules 39 8987

    Article  Google Scholar 

  24. Rahane S B, Kilbey S M and Metters A T 2008 Macromolecules 41 9612

    Article  Google Scholar 

  25. Rahane S B, Floyd J A, Metters A T and Kilbey S M 2008 Adv. Funct. Mater. 18 1232

    Article  Google Scholar 

  26. Rahane S B, Metters A T and Kilbey S M 2010 J. Polym. Sci. A Polym. Chem. 48 1586

    Article  Google Scholar 

  27. Li A, Benetti E M, Tranchida D T, Clasohm J N, Schonherr H and Spencer N D 2011 Macromolecules 44 5344

    Article  Google Scholar 

  28. De Boer B, Simon H K, Werts M P L, Van der Vegte E W and Hadziioannou G 2000 Macromolecules 33 349

    Article  Google Scholar 

  29. Podgórski M 2010 Dent. Mater. 26 188

    Article  Google Scholar 

  30. Meisel D 1998 J. Phys. Chem. B 102 8364

    Article  Google Scholar 

  31. Pandis C., Logakis E, Kyritsis A, Pissis P, Vodnik V V, Dzunuzovic E et al 2011 Eur. Poly. J. 47 1514

    Article  Google Scholar 

  32. Wu W and McKinney J E 1982 J. Dent. Res. 61 1180

    Article  Google Scholar 

  33. Kao E C 1989 Dent. Mater. 5 201

    Article  Google Scholar 

  34. Hughes L J and Britt G E 1961 J. Appl. Poly. Sci. 5 337

    Article  Google Scholar 

  35. Hiorns R 1991 Polymer handbook 4th ed (New York: John Wiley and Sons) p 2250

  36. Sodagar A, Kassaee M Z, Akhavan A, Javadi N, Arab S and Kharazifard M J 2011 J. Prosthodont. Res. 56 120

    Article  Google Scholar 

Download references

Acknowledgement

Partial financial support from the Iranian Nanotechnology Initiative and the vice-president for Research and Technology of University of Tehran is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NASSER NIKFARJAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MAKVANDI, P., NIKFARJAM, N., SANJANI, N.S. et al. Effect of silver nanoparticle on the properties of poly(methyl methacrylate) nanocomposite network made by in situ photoiniferter-mediated photopolymerization. Bull Mater Sci 38, 1625–1631 (2015). https://doi.org/10.1007/s12034-015-0959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0959-z

Keywords

Navigation