Skip to main content
Log in

X-ray diffraction studies of poly(aryl ether ether ketone) fibers with different degrees of crystallinity and orientation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Structural studies of series of ‘as spun’ and drawn PEEK fibers have been carried out using X-ray diffraction and optical microscopy techniques. The analysis of results suggest that fibers produced at a constant draw ratio with increasing draw temperatures show enhanced orientation and crystalline behaviour. The resolved equatorial and meridional traces provide additional structural parameters in terms of crystallinity, crystallite size, and crystallite thickness. It is concluded that drawing at a temperature belowT g (i.e., 144 °C) results in poorly oriented non-crystalline materials, whereas drawing aboveT g results in highly oriented semicrystalline materials. Additional drawing proved to increase the overall orientation with slight improvements in lateral order of the chain molecules. Quantitative analysis revealed that the crystallite size increases with increasing drawing temperature. The results also revealed the increased crystallite size upon additional drawing. Crystalline orientation parameter, 〈P 2c, suggests almost perfect orientation. In all cases, the amorphous orientation is found to be lower than the overall orientation parameter obtained from the optical birefringence. As a result of additional drawing, crystalline orientation was found to increase slightly but the increase in the orientation of non-crystalline material was found to be substantial. An average crystalline density was determined from the orthorhombic unit cell dimensions. It was found to vary as a result of processing conditions. It was also found that the value of the maximum birefringence shows heavy dependence on the chain conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Hine, B. Brew, R. A. Ducket, and I. M. Ward,Comp. Sci. Tech.,40, 47 (1991).

    Article  CAS  Google Scholar 

  2. C. C. Jeng and M. Chen,Comp. Sci. Tech.,60, 1863 (2000).

    Article  CAS  Google Scholar 

  3. P. Werner, V. Altstadt, R. Jaskulka, O. Jacobs, J. K. Sandler, M. S. P. Shaffer, and A. H. Windle,Wear,257, 1006 (2004).

    Article  CAS  Google Scholar 

  4. D. J. Blundell and B. N. Osborn,Polymer,24, 953 (1983).

    Article  CAS  Google Scholar 

  5. J. N. Hay, D. J. Kemmish, J. I. Langford, and I. M. Rae,Polymer (Commun.),25, 175 (1984).

    CAS  Google Scholar 

  6. N. T. Wakelyn,Polymer (Commun.),25, 306 (1984).

    CAS  Google Scholar 

  7. J. N. Clark, F. G. Herring, and N. R. Jagannathan,Polymer (Commun.),26, 329 (1985).

    CAS  Google Scholar 

  8. R. H. Olley, D. C. Bassett, and D. J. Blundell,Polymer,27, 344 (1986).

    Article  CAS  Google Scholar 

  9. S. Kumar, D. P. Anderson, and W. W. Adams,Polymer,27, 329 (1986).

    Article  CAS  Google Scholar 

  10. T. Susaga and M. Hagiwara,Polymer,27, 821 (1986).

    Article  Google Scholar 

  11. P. C. Dawson and D. J. Blundell,Polymer,21, 577 (1980).

    Article  CAS  Google Scholar 

  12. O. Yoda,Polymer (Commun.),25, 238 (1984).

    CAS  Google Scholar 

  13. O. Yoda,Polymer (Commun.),26, 16 (1985).

    CAS  Google Scholar 

  14. T. Kunugi, A. Mizushima, and T. Hayakawa,Polymer (Commun.),27, 175 (1986).

    CAS  Google Scholar 

  15. D. R. Rueda, F. Ania, A. Richardson, I. M. Ward, and F. J. B. Calleja,Polymer (Commun.),24, 258 (1983).

    CAS  Google Scholar 

  16. Y. Ohkoshi, H. Ohshima, T. Matsuhisa, K. Toriumi, and A. Kondo,Sen-i Gakkaishi,45, 509 (1989).

    CAS  Google Scholar 

  17. Y. Ohkoshi, H. Ohshima, T. Matsuhisa, K. Toriumi, and A. Kondo,Sen-i Gakkaishi,46, 87 (1990).

    CAS  Google Scholar 

  18. A. M. Voice, D. I. Bower, and I. M. Ward,Polymer,34, 1154 (1993).

    Article  CAS  Google Scholar 

  19. A. J. Lovinger and D. Davis,Polymer (Commun.),26, 322 (1985).

    CAS  Google Scholar 

  20. T. E. Attwood, P. C. Dawson, J. L. Freeman, L. R. J. Hoy, J. B. Rose, and P. A. Staniland,Polymer,22, 1096 (1981).

    Article  CAS  Google Scholar 

  21. V. L. Rao, P. U. Sabeena, A. Saxena, C. Gopalakrishnan, K. Krishnan, P. V. Ravindran, and K. N. Ninan,Eur. Poly. J.,40, 2645 (2004).

    Article  CAS  Google Scholar 

  22. F. J. Medellin-Rodriguez and P. J. Phillips,Polym. Eng. Sci.,30, 860 (1990).

    Article  CAS  Google Scholar 

  23. J. Devaux, D. Delimoy, D. Daoust, R. Legras, J. P. Mercier, C. Strazielle, and E. Nield,Polymer,26, 1994 (1985).

    Article  CAS  Google Scholar 

  24. A. V. Fratini, E. M. Cross, R. B. Whitaker, and W. W. Adams,Polymer,27, 861 (1986).

    Article  CAS  Google Scholar 

  25. J. Boon and E. P. Magre,Die Makromolekulare Chemie,126, 130 (1969).

    Article  CAS  Google Scholar 

  26. T. Liu, S. Wang, Z. Mo, and H. Zhang,J. Appl. Poly. Sci.,73, 237 (1999).

    Article  CAS  Google Scholar 

  27. J. N. Hay, J. I. Langford, and J. R. Lloyd,Polymer,30, 489 (1989).

    Article  CAS  Google Scholar 

  28. D. J. Blundell and J. D’Mello,Polymer,32, 304 (1991).

    Article  CAS  Google Scholar 

  29. A. M. Hindeleh, D. J. Johnson, and P. E. Montague in “Fibre Diffraction Methods”, (A. D. French and K. H. Gardner Eds.), p.149, ACS Symp. No. 141, American Chemical Society, Washington DC, 1983.

    Google Scholar 

  30. A. R. Stokes,Proc. Phys. Soc.,A166, 283 (1948).

    Google Scholar 

  31. W. Ruland,J. Appl. Phys.,38, 3585 (1967).

    Article  CAS  Google Scholar 

  32. Z. W. Wilchinski,J. Appl. Phys.,30, 792 (1959).

    Article  Google Scholar 

  33. Z. W. Wilchinski,J. Appl. Phys.,31, 1969 (1960).

    Article  Google Scholar 

  34. Z. W. Wilchinski,Advances in X-ray Analysis,6, 231 (1962).

    Google Scholar 

  35. I. Karacan, Ph.D Thesis, University of Leeds, 1986.

  36. A. M. Hindeleh and D. J. Johnson,Polymer,19, 27 (1978).

    Article  CAS  Google Scholar 

  37. R. S. Stein,J. Polym. Sci.,31, 327 (1958).

    Article  CAS  Google Scholar 

  38. M. Cakmak,J. Polym. Sci. Polym. Lett.,27, 119 (1989).

    CAS  Google Scholar 

  39. J. Shimizu, T. Kikutani, Y. Ookoshi, and A. Takaku,Sen-i Gakkaishi,41(11), 59 (1985).

    Google Scholar 

  40. T. Liu, Z. Mo, H. Zhang, H. Na, and Z. Wu,Eur. Polym. J. 33, 913 (1997).

    Article  Google Scholar 

  41. N. T. Wakelyn,J. Polym. Sci., Polym. Lett. Ed.,25, 25 (1987).

    CAS  Google Scholar 

  42. R. J. Abraham and I. S. Haworth,Polymer,32, 121 (1991).

    Article  CAS  Google Scholar 

  43. C. W. Bunn, “Chemical Crystallography”, p.312, Oxford University Press, London, 1961.

    Google Scholar 

  44. J. Furukawa, S. Yamashita, T. Kotani, and M. J. Kawashima,J. Appl. Polym. Sci.,13, 2527 (1969).

    Article  CAS  Google Scholar 

  45. E. J. Roch, R. S. Stein, and E. L. Thomas,J. Polym. Sci., Polym. Phys. Ed.,18, 1145 (1980).

    Article  Google Scholar 

  46. J. P. Hummel and P. J. Flory,Macromolecules,13, 484 (1980).

    Article  Google Scholar 

  47. D. J. Blundell and A. B. Newton,Polymer,32, 308 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Karacan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karacan, I. X-ray diffraction studies of poly(aryl ether ether ketone) fibers with different degrees of crystallinity and orientation. Fibers Polym 6, 206–218 (2005). https://doi.org/10.1007/BF02875644

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875644

Keywords

Navigation