Skip to main content
Log in

The relation of root systems to shoot systems in vascular plants

  • Interpreting Botanical Progress
  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The roots and shoots of vascular plants may be positionally and developmentally related in various ways. However, botanical teaching and research are strongly influenced by the paradigmatic annual dicotyledon, whose bipolar embryo develops into a plant with root and shoot meeting only at the hypocotyl. In 1930 Goebel criticized this example as a general model for plants, proposing instead the opposed concepts “allorhizy” (referring to plants whose root and shoot are related as above) and “homorhizy”(referring to plants without a bipolar embryo, all of whose roots are shoot-borne, e.g., pteridophytes). Goebel’s approach permeates the extensive German morphological literature, but has been virtually ignored in English-language literature. The allorhizy/homorhizy dichotomy has proved heuristic. However, it suggests a correlation between embryo type and mature morphology that does not always hold. Furthermore, it does not take into account the root-borne shoots typical of many plant species. Finally, Goebel’s presentation of the terms (which he does not explicitly define) creates ambiguity as to whether they designate structural concepts or the attributes of evolutionary groups. The alternative proposed here is a structural analysis of the possible topological relationships among root and shoot systems. Each structural class is then considered with regard to embryo types, potential for clonal growth and other ecological correlates, and phylogenetic distribution. This approach provides both a test of Goebel’s concepts and a basis for further comparative study of wholeplant form.

Zusammenfassung

Die Wurzeln und Sprossen der vaskulären Pflanzen können stellungsund entwicklungsmässig auf verschiedene Art aufeinander bezogen sein. Gleichwohl sind botanische Lehre und Forschung sehr stark beeinflusst von dem paradigmatischen jährlichen Dikotylen, dessen bipolares Embryo sich in eine Pflanze mit Vereinigung der Wurzelund Sprossensystemen ausschliesslich an dem Hypokotyl entwickelt. Im Jahre 1930 kritisierte Goebel dieses Beispiel als ein allgemeines Modell für Pflanzen, und schlug statt dessen die gegenseitigen Begriffe “Allorhizie” (was sich auf Pflanzen deren Wurzel und Spross verwandt, wie oben angefürt, bezieht) und “Homorhizie” (was sich auf Pflanzen ohne ein bipolares Embryo, alle dessen Wurzeln sprossbürtig sind, z. B. Pteridophyten, bezieht) vor. Goebels Versuch, sehr verbreitet in der umfassenden deutschen morphologischen Literatur, wurde aber in der englischen Literatur praktisch ignoriert. Die Allorhizie/Homorhizie Dichotomie bewies sich heuristisch. Trotzdem deutet sie eine Wechselbeziehung zwischen Embryotyp und Morphologie der ausgewachsenen Pflanze an, die nicht immer beweisbar ist. Ausserdem nimmt dies nicht die Wurzelsprosse typisch für so viele Pflanzenarten in Betracht. Letztlich, Goebels Darstellung der Begriffe (welche er nicht deutlich definiert) erzeugt Zweideutigkeit ob sie strukturelle Begriffe oder Attribute von evolutionären Gruppen bezeichnen. Die Alternative, die hier vorgeschlagen wird, ist eine strukturelle Analyse der möglichen topologischen Beziehungen zwischen Wurzelund Sprossensystemen. Jede strukturelle Klasse ist somit erwägt in Hinsicht auf die Embryotypen, Potential für klonales Wachstum und andere ökologischen Merkmale, und phylogenetische Verteilung. Dieser Versuch liefert sowohl eine Untersuchung von Goebels Begriffen als auch eine Basis für weitere vergleichende Studien der Form der ganzen Pflanzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aeschimann, D. &G. Bocquet. 1980a. Allorhizie et homorhizie, une réconsideration des définitions et de la terminologie. Candollea35: 19–35.

    Google Scholar 

  • —. 1980b. Les types biologiques duSilene vulgaris s.l. (Caryophyllaceae). Candollea35: 451–495.

    Google Scholar 

  • Arber, A. 1930. Root and shoot in the angiosperms: A study of morphological categories. New Phytol.29: 297–315.

    Article  Google Scholar 

  • — 1941. The interpretation of leaf and root in the angiosperms. Biol. Rev.16: 81–105.

    Article  Google Scholar 

  • —. 1950. The natural philosophy of plant form. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ballade, P. 1968. Caulogenèse apicale sur les jeunes racines du Cresson. Bull. Soc. Bot. Fr. Mém.115: 250–258.

    Google Scholar 

  • — 1970. Précisions nouvelles sur la caulogenèse apicale des racines axillaires du Cresson. Planta92: 138–145.

    Article  Google Scholar 

  • Banks, H. P. 1968. The early history of land plants. Pages 73–107in E. T. Drake (ed.), Evolution and environment. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Barlow, P. W. 1986. Adventitious roots of whole plants: Their forms, functions, and evolution. Pages 67–110in M. B. Jackson (ed.), New root formation in plants and cuttings. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Barnes, B. V. 1966. The clonal growth habit of American aspens. Ecology47: 439–447.

    Article  Google Scholar 

  • Beijerinck, M. W. 1921. Beobachtungen und Betrachtungen über Wurzelknospen und Nebenwurzeln. Pages 6–121 + vi pls.in Verzamelde Geschriften 2, Delft.

  • Bell, A. D. 1974. Rhizome organization in relation to vegetative spread inMedeola virginiana. J. Arnold Arb.55: 458–468.

    Google Scholar 

  • —. 1984. Dynamic morphology: A contribution to plant population ecology. Pages 48–65in R. Dirzo & J. Sarukhán (eds.), Perspectives on plant population ecology. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Benzing, D. H., W. E. Friedman, G. Peterson &A. Renfrow. 1983. Shootlessness, velamentous roots, and the pre-eminence of the Orchidaceae in the epiphytic biotope. Amer. J. Bot.70: 121–133.

    Article  Google Scholar 

  • — &D. W. Ott. 1981. Vegetative reduction in epiphytic Bromeliaceae and Orchidaceae: Its origin and significance. Biotropica13: 131–140.

    Article  Google Scholar 

  • Bierhorst, D. W. 1971. Morphology of vascular plants. Macmillan Co., New York.

    Google Scholar 

  • —. 1985. On rhizoclads in the oak fern,Quercifilix zeilanica. Amer. J. Bot.72: 1159–1161.

    Article  Google Scholar 

  • Boke, N. 1980. Developmental morphology and anatomy in Cactaceae. BioScience30: 605–610.

    Article  Google Scholar 

  • Bonnett, H. T. &J. G. Torrey. 1965. Chemical control of organ formation in root segments ofConvolvulus culturedin vitro. Pl. Physiol.40: 1228–1236.

    CAS  Google Scholar 

  • Bornman, C. H. 1978.Welwitschia, paradox of a parched paradise. C. Struik Publishers, Cape Town.

    Google Scholar 

  • Bower, F. O. 1935. Primitive land plants. Macmillan and Co., London.

    Google Scholar 

  • Bremer, K., C. J. Humphries, B. D. Mishler &S. P. Churchill. 1987. On cladistic relationships in green plants. Taxon36: 339–349.

    Article  Google Scholar 

  • Brown, A. B. 1935. Cambial activity, root habit, and sucker development in two species of poplar. New Phytol.34: 163–179.

    Article  Google Scholar 

  • Buxbaum, F. 1950. Morphology of Cacti. Abbey Garden Press, Pasadena, California.

    Google Scholar 

  • Castro e Santos, A. de. 1980. Essai de classification des arbres tropicaux selon leur capacité de réitération. Biotropica12: 187–194.

    Article  Google Scholar 

  • Chamberlain, C. J. 1919. The living cycads. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Champagnat, M. 1971. Recherches sur la multiplication végétative deNeottia nidus-avis. Ann. Sc. Nat. Bot. 12ème sér.12: 209–248.

    Google Scholar 

  • Corner, E. J. H. 1966. The natural history of palms. Weidenfeld & Nicolson, London.

    Google Scholar 

  • Daubs, E. H. 1965. A monograph of Lemnaceae. Illinois Biol. Monogr.34: 1–118. University of Illinois Press, Urbana, Illinois.

    Google Scholar 

  • Docters van Leeuwen, W. 1921. On the vegetative propagation of two species ofTaeniophyllum from Java. Ann. Jard. Bot. Buitenzorg31: 46–56.

    Google Scholar 

  • Doyle, J. &M. J. Donoghue. 1986. Seed plant phytogeny and the origin of angiosperms: An experimental cladistic approach. Bot. Rev.52: 321–431.

    Article  Google Scholar 

  • Du Rietz, G. E. 1931. Life-forms of terrestrial flowering plants. Acta Phytogeogr. Suecica3: 1–95.

    Google Scholar 

  • Ellmore, G. S. 1981. Root dimorphism inLudwigia peploides (Onagraceae): Structure and gas content of mature roots. Amer. J. Bot.68: 557–568.

    Article  Google Scholar 

  • Esau, K. 1977. Anatomy of seed plants. John Wiley & Sons, New York.

    Google Scholar 

  • Fisher, J. 1984. Tree architecture: Relationships between structure and function. Pages 541–589in R. A. White & W. C. Dickison (eds.), Contemporary problems in plant anatomy. Academic Press, Orlando, Florida.

    Google Scholar 

  • —. 1986. Branching patterns and angles in trees. Pages 493–523in T. J. Givnish (ed.), On the economy of plant form and function. Cambridge University Press, Cambridge.

    Google Scholar 

  • Foster, A. &E. Gifford. 1974. Comparative morphology of vascular plants, 2nd ed. Freeman, San Francisco.

    Google Scholar 

  • Fujii, K. 1895. On the nature and origin of so-called “chichi” (nipple) ofGinkgo biloba, L. Bot. Mag. Tokyo9: 444–440 + i pl.

    Google Scholar 

  • Goebel, K. 1878. Über Wurzelsprosse beiAnthurium longifolium. Bot. Zeitung36: 645–648.

    Google Scholar 

  • —. 1900–1905. Organography of plants, ed. 2, trans, by I. B. Balfour. 2 volumes. Oxford University Press, London.

    Google Scholar 

  • —. 1902. Über Regeneration im Pflanzenreich. Biol. Centralblatt22: 385–397, 417–438,481-505.

    Google Scholar 

  • —. 1928–1933. Organographie der Pflanzen, 3 Aufl. 3 volumes. Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Groff, P. A. 1986. Growth patterns inGentianopsis (Gentianaceae), with special reference toG. barbellata (Engelm.) Iltis. (Abstract.) Amer. J. Bot.73: 628.

    Google Scholar 

  • Guédès, M. 1979. Morphology of seed plants. J. Cramer, Vaduz.

    Google Scholar 

  • Guerrant, E. O. 1984. The role of ontogeny in the evolution and ecology of selected speciesof Delphinium andLimnanthes. Ph.D. Dissertation. University of California, Berkeley.

    Google Scholar 

  • —. 1988. Heterochrony in plants: The intersection of evolution, ecology, and ontogeny.In M. McKinney (ed.), Heterochrony in evolution. Plenum Publishing Co., New York.

    Google Scholar 

  • Haccius, B. 1953. Histogenetische Untersuchungen an Wurzelhaube und Kotyledonarscheide geophiler Keimpflanzen (Podophyllum undEranthis). Planta41: 439–458.

    Article  Google Scholar 

  • Hagemann, W. 1984. Die Baupläne der Pflanzen, 3 Aufl. Privately published, Heidelberg.

    Google Scholar 

  • Hallé, F. &R. A. A. Oldeman. 1970. Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Masson and Co., Paris.

    Google Scholar 

  • —, &P. B. Tomlinson. 1978. Tropical trees and forests: An architectural analysis. Springer-Verlag, Berlin.

    Google Scholar 

  • Harper, J. L. 1977. Population biology of plants. Academic Press, London.

    Google Scholar 

  • —. 1985. Modules, branches, and the capture of resources. Pages 1–34in J. B. C. Jackson, L. W. Buss & R. E. Cook (eds.), Population biology and evolution of clonal organisms. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Hickman, C. S. 1980. Gastropod radulae and the assessment of form in evolutionary paleontology. Paleobiology6: 276–294.

    Google Scholar 

  • Holm, Th. 1925. On the development of buds upon roots and leaves. Ann. Bot.39: 867–881.

    Google Scholar 

  • Hsiao, A. I. &G. I. McIntyre. 1984. Evidence of competition for water as a factor in the mechanism of root-bud inhibition in milkweed (Asclepias syriaca). Canad. J. Bot.62: 379–384.

    Article  Google Scholar 

  • Janczewski, E. de. 1876–1877. Recherches sur le développement des bourgeons dans les Prêles. Mém. Soc. Nationale Sc. Nat. de Cherbourg20: 69.

    Google Scholar 

  • Janzen, D. H. 1976. Why bamboos take so long to flower. Annual Rev. Ecol. Syst.7: 347–391.

    Article  Google Scholar 

  • Jeannoda-Robinson, V. 1977. Contribution à l’étude de l’architecture des herbes. Thèse de spécialité, Montpellier.

  • Jenik, J. 1978. Roots and root systems in tropical trees: morphologic and ecologic aspects. Pages 323–349in P. B. Tomlinson & M. H. Zimmerman (eds.), Tropical trees as living systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • — &J. Kubíková. 1969. Root system of tropical trees. 3. The heterorhizis ofAeschynomene elaphroxylon (Guill. et Perr.) Taub. Preslia (Praha)41: 220–226.

    Google Scholar 

  • Kaplan, D. R. 1969. Seed development inDowningia. Phytomorphology19: 253–278.

    Google Scholar 

  • —. 1977. Morphological status of the shoot systems of Psilotaceae. Brittonia29:30–53.

    Article  Google Scholar 

  • —. 1984. The concept of homology and its central role in the elucidation of plant systematic relationships. Pages 51–70in T. Duncan & T. Stuessy (eds.), Cladistics: Perspectives on the reconstruction of evolutionary history. Columbia University Press, New York.

    Google Scholar 

  • Karrfalt, E. E. 1981. The comparative and developmental morphology of the root system ofSelaginella selaginoides (L.) Link. Amer. J. Bot.68: 244–253.

    Article  Google Scholar 

  • Kormanik, P. P. &C. L. Brown. 1967. Root buds and the development of root suckers in sweetgum. For. Sci.13: 338–345.

    Google Scholar 

  • Kuijt, J. 1969. The biology of parasitic flowering plants. University of California Press, Berkeley.

    Google Scholar 

  • Landolt, E. 1986. The family of Lemnaceae—A monographic study. Vol. I. Veröff. Geobot. Inst. ETH, Stiftung Rübel, Zürich71: 1–566.

    Google Scholar 

  • Liem, K. F. &D. B. Wake. 1985. Morphology: Current approaches and concepts. Pages 366–377in M. Hildebrand, D. M. Bramble, K. F. Liem & D. B. Wake (eds.), Functional vertebrate morphology. Belknap/Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Lloyd, F. E. 1942. The carnivorous plants. Chronica Botanica, Waltham, Massachusetts.

    Google Scholar 

  • Lorenzen, H. 1972. Physiologische Morphologie der höheren Pflanzen. E. Ulmer, Stuttgart.

    Google Scholar 

  • Martens, P. 1971. Les Gnétophytes. Handbuch der Pflanzenanatomie. Bd. 12, T. 2. Ge-brüder Borntraeger, Berlin.

    Google Scholar 

  • McIntyre, G. I. 1979. Developmental studies onEuphorbia esula. Evidence for water as a factor in the mechanism of root bud inhibition. Canad. J. Bot.57: 2572–2581.

    Article  Google Scholar 

  • McLean, R. C. &W. R. Ivimey-Cook. 1951. Textbook of theoretical botany. Vol. 1. Longmans Green and Co., London.

    Google Scholar 

  • McVeigh, I. 1937. Vegetative reproduction of the fern sporophyte. Bot. Rev.3: 457–497.

    Google Scholar 

  • Mirov, N. T. 1967. The genusPinus. The Ronald Press Co., New York.

    Google Scholar 

  • Mishler, B. D. &S. P. Churchill. 1984. A cladistic approach to the phytogeny of the “bryophytes”. Brittonia36: 406–424.

    Article  Google Scholar 

  • Nadkarni, N. M. 1981. Canopy roots: Convergent evolution in rainforest nutrient cycles. Science214: 1023–1024.

    Article  PubMed  Google Scholar 

  • Noble, J. C., A. D. Bell &J. L. Harper. 1979. The population biology of plants with clonal growth. I. The morphology and structural demography ofCarex arenaria. J. Ecol.67: 983–1008.

    Article  Google Scholar 

  • Olderman, R. A. A. 1974. L’architecture de la forêt guyanaise. Mém. ORSTOM 73.

  • Pant, D. D. 1973.Cycas and the Cycadales, ed. 2. Central Book Depot, Allahabad.

    Google Scholar 

  • Paolillo, D. J. 1982. Meristems and evolution: Developmental correspondence among the rhizomorphs of the lycopsids. Amer. J. Bot.69: 1032–1042.

    Article  Google Scholar 

  • Peterson, R. L. 1970. Bud formation at the root apex ofOphioglossum petiolatum. Phytomorphology20: 183–190.

    Google Scholar 

  • —. 1975. The initiation and development of root buds. Pages 125–161in J.G. Torrey & D. T. Clarkson (eds.), The development and function of roots. Academic Press, London.

    Google Scholar 

  • Piaget, J. 1970. Structuralism. Trans, by C. Maschler. Basic Books, New York.

    Google Scholar 

  • Posluszny, U., M. J. Sharp &P. A. Keddy. 1984. Vegetative propagation inRhexia virginica (Melastomataceae): Some morphological and ecological considerations. Canad. J. Bot.62:2118–2121.

    Google Scholar 

  • Raju, M. V. S., R. T. Coupland &T. A. Steeves. 1966. On the occurrence of root buds on perennial plants in Saskatchewan. Canad. J. Bot.44: 33–37 + i pl.

    Google Scholar 

  • Rauh, W. 1937. Die Bildung von Hypokotylund Wurzelsprossen und ihre Bedeutung für die Wuchsformen der Pflanzen. Nova Acta Leopoldina, N. F.4: 393–553.

    Google Scholar 

  • —. 1941. Morphologie der Nutzplanzen. Quelle & Meyer, Leipzig.

    Google Scholar 

  • Raup, D. M. 1972. Approaches to morphologic analysis. Pages 28–44in T. J. M. Schopf (ed.), Models in paleobiology. Freeman, Cooper, and Co., San Francisco.

    Google Scholar 

  • — &A. Michelson. 1965. Theoretical morphology of the coiled shell. Science147: 1294–1295.

    Article  PubMed  Google Scholar 

  • Raven, J. A. 1986. Evolution of plant life forms. Pages 421–492in T. J. Givnish (ed.), On the economy of plant form and function. Cambridge University Press, Cambridge.

    Google Scholar 

  • Richards, J. H., J. Z. Beck &A. M. Hirsch. 1983. Structural investigations of asexual reproduction inNephrolepis exaltata andPlatycerium bifurcatum. Amer. J. Bot.70: 993–1001.

    Article  Google Scholar 

  • Rutishauser, R. &R. Sattler. 1985. Complementarity and heuristic value of contrasting models in structural botany. Bot. Jahrb. Syst.107: 415–455.

    Google Scholar 

  • Sanford, R. L. 1987. Apogeotropic roots in an Amazon rain forest. Science235: 1062–1064.

    Article  PubMed  Google Scholar 

  • Sattler, R. 1966. Towards a more adequate approach to comparative morphology. Phytomorphology16: 417–429.

    Google Scholar 

  • — 1974. A new conception of the shoot of higher plants. J. Theor. Biol.47: 367–382.

    Article  PubMed  CAS  Google Scholar 

  • — 1984. Homology-A continuing challenge. Syst. Bot.9: 382–394.

    Article  Google Scholar 

  • Sculthorpe, C. D. 1967. The biology of aquatic vascular plants. Edward Arnold Ltd., London.

    Google Scholar 

  • Seilacher, A. 1973. Fabricational noise in adaptive morphology. Syst. Zool.22: 466–477.

    Article  Google Scholar 

  • Shinozaki, K., K. Yoda, K. Hozumi &T. Kira. 1964. A quantitative analysis of plant form—The pipe model theory. I. Basic analyses. II. Further evidence of the theory and its application in forest ecology. Jap. J. Ecol. (Nippon Seita Gakkaishi)14: 97–105, 133–139.

    Google Scholar 

  • Slack, A. 1979. Carnivorous plants. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Stevenson, D. W. (In press). Strobilar ontogeny in the Cycadales.In P. Leins, P. Endress & S. Tucker (eds.), Aspects of floral development. E. Schweizerbart’sche, Stuttgart.

  • Stewart, W. N. 1983. Paleobotany and the evolution of plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Stone, E. C. &R. B. Vasey. 1968. Preservation of coast redwood on alluvial flats. Science159: 157–161.

    Article  PubMed  Google Scholar 

  • Stoutamire, W. 1974. Terrestrial orchid seedlings. Pages 101–128in C. L. Withner (ed.), The orchids, scientific studies. John Wiley & Sons, New York.

    Google Scholar 

  • Taylor, P. 1986. New taxa inUtricularia (Lentibulariaceae). Kew Bull.41: 1–18.

    Article  Google Scholar 

  • Tiffney, B. &K. Niklas 1985. Clonal growth in land plants: A paleobotanical perspective. Pages 35–66in J. B. C. Jackson, L. W. Buss & R. E. Cook (eds.), Population biology and evolution of clonal organisms. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Tomlinson, P. B. 1983. Tree architecture. Amer. Sci.71: 141–149.

    PubMed  CAS  Google Scholar 

  • — &M. H. Zimmerman (eds.). 1978. Tropical trees as living systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Torrey, J. G. 1958. Endogenous bud and root formation by isolated roots ofConvolvulus in vitro. Pl. Physiol.33: 258–263.

    CAS  Google Scholar 

  • Troll, W. 1935–1943. Vergleichende Morphologie der höheren Pflanzen. Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • —. 1973. Allgemeine Botanik, 4 Aufl. Ferdinand Enke Verlag, Stuttgart.

    Google Scholar 

  • Von Teichman undLogischen, I. &P. J. Robbertse. 1981. The subterranean intermediary organs ofDioscorea cotinifolia Kunth. 2. Anatomy of these organs in comparison with that of a typical root and shoot. J. S. African Bot.47: 637–651.

    Google Scholar 

  • — &H. P. van der Shijff. 1977. The subterranean intermediary organs ofDioscorea cotinifolia Kunth. 1. The germination, development, morphology, and vegetative reproduction of the tuberous swollen and cylindrical intermediary organs. J. S. African Bot.43: 41–56.

    Google Scholar 

  • Wake, D. B. 1982. Functional and evolutionary morphology. Persp. Biol. Med.25: 603–620.

    CAS  Google Scholar 

  • — &A. Larson. 1987. Multidimensional analysis of an evolving lineage. Science238: 42–48.

    Article  PubMed  Google Scholar 

  • Warming, E. 1882. Die Familie der Podostemaceae. Bot. Jahrb. Syst.2: 361–364 + i pl.

    Google Scholar 

  • —. 1909. Oecology of plants. Oxford University Press, London.

    Google Scholar 

  • Weber, H. 1936. Vergleichend-morphologische Studien über die Sprossbürtige Bewurzelung. Nova Acta Leopoldina, N. F.4: 229–298 + ii pls.

    Google Scholar 

  • Webster, T. R. &T. A. Steeves. 1967. Developmental morphology of the root ofSelaginella martensii Spring. Canad. J. Bot.45: 395–404.

    Google Scholar 

  • White, J. 1979. The plant as a metapopulation. Annual Rev. Ecol. Syst.10: 109–145.

    Article  Google Scholar 

  • White, R. A. 1969. Vegetative propagation in the ferns. II. Root buds inAmphoradenium. Bull. Torrey Bot. Club96: 10–19.

    Article  Google Scholar 

  • Willis, J. C. 1902. Studies in the morphology and ecology of the Podostemaceae of Ceylon and India. Ann. Roy. Bot. Gard. Peradeniya1: 267–465.

    Google Scholar 

  • Wittrock, V. B. 1884. Über Wurzelsprossen bei krautartigen Gewächsen, mit besonderer Rücksicht auf ihre verschiedene biologische Bedeutung. Bot. Centralbl.17: 227–264.

    Google Scholar 

  • Wochok, Z. S. &I. M. Sussex. 1976. Redetermination of cultured root tips to leafy shoots inSelaginella willdenovii. Plant Sci. Lett.6: 185–192.

    Article  Google Scholar 

  • Yamashita, T. 1976. Über die Embryound Wurzelentwicklung beiAponogeton madagascariensis. J. Fac. Sc. Univ. Tokyo III12: 37–63.

    Google Scholar 

  • Zimmerman, M. H. 1978. Hydraulic architecture of some diffuse-porous trees. Canad. J. Bot.56: 2286–2295.

    Article  Google Scholar 

  • Zimmerman, W. 1930. Die Phylogenie der Pflanzen. Gustav Fischer Verlag. Jena.

    Google Scholar 

  • —. 1953. Main results of the “telome theory.” The Paleobotanist1: 456–470.

    Google Scholar 

  • —. 1965. Die Telomtheorie. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groff, P.A., Kaplan, D.R. The relation of root systems to shoot systems in vascular plants. Bot. Rev 54, 387–422 (1988). https://doi.org/10.1007/BF02858417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858417

Keywords

Navigation