Skip to main content
Log in

Megasporogenesis, megagametogenesis, and embryogenesis in Dendrobium nobile (Orchidaceae)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The orchid reproductive strategy, including the formation of numerous tiny seeds, is achieved by the elimination of some stages in the early plant embryogenesis. In this study, we documented in detail the formation of the maternal tissues (the nucellus and integuments), the structures of female gametophyte (megaspores, chalazal nuclei, synergids, polar nuclei), and embryonic structures in Dendrobium nobile. The ovary is unilocular, and the ovule primordia are formed in the placenta before the pollination. The ovule is medionucellate: the two-cell postament and two rows of nucellar cells persist until the death of the inner integument. A monosporic eight-nucleated embryo sac is developed. After the fertilization, the most common central cell nucleus consisted of two joined but not fused polar nuclei. The embryogenesis of D. nobile is similar to the Caryophyllad-type, and it is characterized by the formation of all embryo cells from the apical cell (ca) of a two-celled proembryo. The only exception is that there is no formation of the radicle and/or cotyledons. The basal cell (cb) does not divide during the embryogenesis, gradually transforming into the uninuclear suspensor. Then the suspensor goes through three main stages: it starts with an unbranched cell within the embryo sac, followed by a branched stage growing into the integuments, and it ends with the cell death. The stage-specific development of the female gametophyte and embryo of D. nobile is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alrich P, Higgins W (2008) Illustrated dictionary of orchid genera. Cornell Univ Press, Ithaca: London

  • Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421. https://doi.org/10.1111/nph.12500

    Article  Google Scholar 

  • Attri LK, Bhanwra RK, Nayyar H, Vij SP (2007) Post-pollination developmental changes in floral organs and ovules in an ornamental orchid Cymbidium aloifolium (L.) Sw. J Orchid Soc India 21:20–34

    Google Scholar 

  • Chardard R (1978) Ultrastructure des méiocytes de Dendrobium farmeri (Orchidacée) au cours de la prophase I de la méiose.Bulletin de la Société Botanique de France. Actualités Botaniques 125(1–2):15–18 (in French)

    Google Scholar 

  • Chen CA, Chen CC, Shen CC, Chang YY, Chen YJ (2013) Moscatilin induces apoptosis and mitotic catastrophe in human esophageal cancer cells. J Med Food 16:869–877. https://doi.org/10.1089/jmf.2012.2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements MA (1999) Embryology In: Pridgeon AM, Cribb JC, Chase MW, Rasmussen FN (eds) Genera Orchidacearum. General Introduction, Apostasioideae, Cypripedioideae. Oxford University Press, New York, pp 38–58

  • Currier HB (1957) Callose substance in plant cells. Am J Bot 44(6):478–488. https://doi.org/10.1002/j.1537-2197.1957.tb10567.x

    Article  Google Scholar 

  • Govindappa DA, Karanth KA (1980) Contribution to the embryology of Orchidaceae. Curr Trends Bot Res. Kalyani Publisher, New Delhi

  • Gurudeva MR (2016) Development of male and female gametophytes in Dendrobium ovatum (L.) Kraenzl. (Orchidaceae). J Orchid Soc India 30:75–87

    Google Scholar 

  • Gurudeva MR, Govindappa DA (2008) Ontogeny and organization of female gametophyte in Epidendrum radicans Pavon. ex Lindl. (Orchidaceae). J Orchid Soc India 22:73–76

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol 45(3):115–120. https://doi.org/10.3109/10520297009085351

    Article  CAS  PubMed  Google Scholar 

  • Hinsley A, De Boer HJ, Fay MF, Gale SW, Gardiner LM, Gunasekara RS, Kumar P, Masters S, Metusala D, Roberts DL, Veldman S, Wong S, Phelps J (2018) A review of the trade in orchids and its implications for conservation. Bot J Linn Soc 186(4):435–455. https://doi.org/10.1093/botlinnean/box083

    Article  Google Scholar 

  • Hoch HC, Galvani CD, Szarowski DH, Turner JN (2005) Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97(3):580–588. https://doi.org/10.1080/15572536.2006.11832788

    Article  CAS  PubMed  Google Scholar 

  • Hwang JS, Lee SA, Hong SS, Han XH, Lee C, Kang SJ, Lee D, Kim Y, Hong JT, Lee MK, Hwang BY (2010) Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. Bioorg Med Chem Lett 20:3785–3787. https://doi.org/10.1016/j.bmcl.2010.04.054

    Article  CAS  PubMed  Google Scholar 

  • Israel HW (1962) An electron microscope study of megaspore development in Dendrobium orchids. Dissertation, University of Florida

  • Israel HW, Sagawa Y (1965) Post-pollination ovule development in Dendrobium orchids: III. Fine structure of the meiotic prophase I. Caryologia 18:15–34. https://doi.org/10.1080/00087114.1965.10796154

    Article  Google Scholar 

  • Johansen DA (1950) Plant embryology: embryogeny of the Spermatophyta. London: Chronica Botanica Co., Waltham, Mass., and Wm. Dawson and Sons, Ltd

  • Kolomeitseva GL, Antipina VA, Shirokov AI, Khomutovskii MI, Babosha AV, Ryabchenko AS (2012) Semena orkhidei: razvitie, struktura, prorastanie [orchid seeds: development, structure, and germination]. Geos, Moscow (in Russian)

  • Kolomeitseva GL, Ryabchenko AS, Babosha AV (2017) Features of the embryonic development of Dienia ophrydis (Orchidaceae). Cell Tissue Biol 11:314–323. https://doi.org/10.1134/S1990519X17040071

    Article  Google Scholar 

  • Kolomeitseva GL, Ryabchenko AS, Babosha AV (2019) The first stages of Liparis parviflora (Orchidaceae) embryogenesis. Russ J Dev Biol 50:136–145. https://doi.org/10.1134/S1062360419030032

  • Lysyakova NY, Klimenko EN (2009) The cytoembriological features of the female generative sphere of Orchis pallens (L). Uchenye zapiski Tavricheskogo Natsionalnogo Universiteta im. V. I. Vernadskogo. Series «Biology, chemistry» [Science Note Taurida National University] 22: 72–77 (in Russian)

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill Book Company, Bombay-New Dehli

    Book  Google Scholar 

  • Nafisi S, Saboury AA, Keramat N, Neault JF, Tajmir-Riahi HA (2007) Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J Mol Struct 827(1–3):35–43. https://doi.org/10.1016/j.molstruc.2006.05.004

    Article  CAS  Google Scholar 

  • Navaschin SG (1900) Ob oplodotvorenii u slozhnocvetnyh i orhidnyh [on fertilization in Asteraceae and Orchidaceae]. Bulletin de l'Académie Impériale des Sciences de St-Pétersbourg 13:335–340 (in Russian)

    Google Scholar 

  • Niimoto DH, Sagawa Y (1961) Ovule development in Dendrobium. Am Orch Soc Bull 30:813–819

    Google Scholar 

  • Ochora J (2000) The embryology, seed coat, and conservation of some Kenyan species of the Orchidaceae. Dissertation, University of Cape Town. 207 p

  • Pastrana MD, Santos JK (1931) A contribution to the life history of Dendrobium anosmum Lindl. Nat Applied Sci Bull Philippines Univ 1:133–144

    Google Scholar 

  • Poddubnaya-Arnoldi VA (1958) Investigation of the process of fertilization in some angiosperms on living material. Bot Zhurn 43:178–193 (in Russian)

    Google Scholar 

  • Poddubnaya-Arnoldi VA (1959) Investigation of embryonic processes in some orchids on living material. Embryological studies of angiosperms. Publishing House of the Academy of Science of the USSR, Moscow (in Russian)

  • Poddubnaya-Arnoldi VA (1976) Citoembriologiya pokrytosemennyh rastenij [Cytoembryology of angiosperms]. Science, Moscow (in Russian)

  • Rajan SS (1971) Occurrence of monosporic and bisporic embryo sac in Dendrobium macrostachyum Lindl. Curr Sci 40:554–555

    Google Scholar 

  • Roberts DL, Dixon KW (2008) Orchids Curr Biol 18(8):325–329

    Article  Google Scholar 

  • Sagawa Y, Israel HW (1964) Post-pollination ovule development in Dendrobium orchids. I Introduction. Caryologia 17:53–64. https://doi.org/10.1080/00087114.1964.10796116

    Article  Google Scholar 

  • Shamrov II (1997) Principles classification of types embryogenesis In: Batygina TB (ed) Embryology of flowering plants. Terminology and concepts. Vol. 2. Seed. World and family-95, St. Petersburg, pp 493–508 (in Russian)

  • Shamrov II (1998) Ovule classification in flowering plants – new approaches and concepts. Bot Jahrb Syst Pflanzengesch Pflanzengeogr 120:377–407

    Google Scholar 

  • Shamrov II (2008) Ovule of flowering plants: structure, functions, origin.KMK scientific press ltd., Moscow

  • Shamrov II, Nikiticheva ZI (1992) Ovule and seed morphogenesis in Gymnadenia conopsea (Orchidaceae): structural and histochemical studies. Bot Zhurn 77:45–60 (in Russian)

    Google Scholar 

  • Souèges R (1939) Exposes d’embryologie et de Morphologie Vegetales. X. Embryogenie et classification. Deuxieme fascicule: essai d’un systeme embryogenique (Partie generale). Act Sci Industr (in French)

  • Sriyot N, Thammathaworn A, Theerakulpisut P (2015) Embryology of Spathoglottis plicata Blume: a reinvestigation and additional data. Tropical Nat Hist 15:97–115

    Google Scholar 

  • Swamy BGL (1949) Embryological studies in the Orchidaceae. I. Gametophytes. Am Midl Nat 41:184–201. https://doi.org/10.2307/2422025

    Article  Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556. https://doi.org/10.1093/aob/mcp025

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira da Silva JA, Tsavkelova EA, Zeng S, Ng TB, Parthibhan S, Dobránszki J, Cardoso JC, Rao MV (2015a) Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development. Planta 242:1–22. https://doi.org/10.1007/s00425-015-2301-9

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA, Tsavkelova EA, Ng TB, Dobránszki J, Parthibhan S, Cardoso JC, Rao MV, Zeng SJ (2015b) Asymbiotic in vitro seed propagation of Dendrobium. Plant Cell Rep 34:1685–1706. https://doi.org/10.1007/s00299-015-1829-2

    Article  CAS  PubMed  Google Scholar 

  • Tilton VR, Lersten NR (1981) Ovule development in Ornithogalum caudatum (Liliaceae) with a review of selected papers on angiosperm reproduction: I. integuments, funiculus, and vascular tissue. New Phytol 88:439–457

    Article  Google Scholar 

  • Tsavkelova EA, Egorova MA, Leontieva MR, Malakho SG, Kolomeitseva GL, Netrusov AI (2016) Dendrobium nobile Lindl. seed germination in co-cultures with diverse associated bacteria. Plant Growth Regul 80:79–91. https://doi.org/10.1007/s10725-016-0155-1

    Article  CAS  Google Scholar 

  • Vasudevan R, van Staden JV (2010) Fruit harvesting time and corresponding morphological changes of seed integuments influence in vitro seed germination of Dendrobium nobile Lindl. Plant Growth Regul 60:237–246. https://doi.org/10.1007/s10725-009-9437-1

    Article  CAS  Google Scholar 

  • Yamazaki J, Miyoshi K (2006) In vitro asymbiotic germination of immature seed and formation of protocorm by Cephalanthera falcata (Orchidaceae). Ann Bot 98:1197–1206. https://doi.org/10.1093/aob/mcl223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Sung SH, Kim YC (2007) Antifibrotic phenanthrenes of Dendrobium nobile stems. J Nat Prod 70:1925–1929. https://doi.org/10.1021/np070423f

    Article  CAS  PubMed  Google Scholar 

  • Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5:1371–1381. https://doi.org/10.1105/tpc.5.10.1371

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Xu JK, Wang J, Wang NI, Kurihara H, Kitanaka S, Yao XS (2007) Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile. J Nat Prod 70:24–28. https://doi.org/10.1021/np060449r

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Paul Girling for grammatically editing the manuscript.

Funding

This study was carried out under Institutional research project No. 118021490111-5 at the Unique Scientific Installation “The Fund Greenhouse” of the Main Botanical Garden of the Russian Academy of Sciences (Moscow, Russia).

Author information

Authors and Affiliations

Authors

Contributions

G.L. Kolomeitseva, A.V. Babosha, and A.S. Ryabchenko are responsible for the conceptualization, microscopic observations, formal analysis, investigation, and methodology. E.A. Tsavkelova is responsible for the translation, revision, and editing of the manuscript.

Corresponding author

Correspondence to Elena A. Tsavkelova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Hanns H

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Megasporogenesis and megagametogenesis in Dendrobium nobile. a A functional chalazal megaspore, and degenerating micropylar and middle megaspores (autofluorescence). b A functional chalazal megaspore before the first nuclear division (dipyridamole staining). c Both dying megaspores fluorescent brightly, the beginning of the death of the nucellar epidermis before megagametogenesis (autofluorescence). d The bright fluorescence of degenerating micropylar megaspores (calcofluor staining). e The embryo sac with an undivided chalazal nucleus (dipyridamole staining). f The attached daughter nuclei formed after the division of the micropylar and chalazal at the fertilization stage (ethidium bromide staining). cnchalazal nuclei; ec–egg cell; fm–functional megaspore; ilii–inner layer of inner integument; iloi–inner layer of outer integument; mc–micropyle; mm–micropylar megaspore; mn–micropylar nuclei; ne–nucellar epidermis; olii–outer layer of inner integument; ps–postament; ssperm; v–vacuole. Scale bar: 10 μm (a-e); 5 μm (f). (PDF 35757 kb)

ESM 2

Fertilization and the central cell nucleus. The figure shows the paired optical sections of two different stacks. a, b A central cell nucleus consisting of three attached nuclei (two polar nuclei and one sperm nucleus; ethidium bromide staining). c, d The suspensor, leaving the embryo sac and the inner integument, and the development of the suspensor blades in the micropylar zone of the outer integument. The suspensor nucleus is localized in the suspensor neck (calcofluor staining). bs–suspensor blades; ccn–central cell nucleus; cn–chalazal nuclei; ec–egg cell; ep–embryo proper; ilii–inner layer of inner integument; iloi–inner layer of outer integument; n–nucleus; ne–nucellar epidermis; olii–outer layer of inner integument; oloi–outer layer of outer integument; pn–polar nuclei; ps–postament; s–sperm; sg–synergids; sn–suspensor neck; sp–suspensor. Scale bar: 10 μm (a, b); 30 μm (c, d). (PDF 8372 kb)

ESM 3

The deposition of the secondary material within the cell walls of the inner layer of the inner integument. a Autofluorescence of the secondary material at the stage of a three-celled embryo. b The fluorescence of the secondary material after staining with calcofluor at the stage of a four-celled embryo (100–120 days after pollination). c A multicellular embryo with a well-developed branched suspensor, the inner layer of the outer integument is destroyed (autofluorescence). d Blue fluorescence of the coat (mantle) of a branched suspensor after staining with ethidium bromide. In all the figures, the thickening is absent in the micropylar part of the embryo sac coat. The micropylar end is in the upper left corner. bs–suspensor blades; cbcb cell; cccc cell; cdcd cell; ep–embryo proper; ilii–inner layer of inner integument; iloi–inner layer of outer integument; olii–outer layer of inner integument; oloi–outer layer of outer integument; mc–micropyle; ps–postament; sp–suspensor. Scale bars: 20 μm (a); 30 μm (b); 100 μm (c); 50 μm (d) (PDF 16772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolomeitseva, G.L., Babosha, A.V., Ryabchenko, A.S. et al. Megasporogenesis, megagametogenesis, and embryogenesis in Dendrobium nobile (Orchidaceae). Protoplasma 258, 301–317 (2021). https://doi.org/10.1007/s00709-020-01573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01573-2

Keywords

Navigation