Skip to main content
Log in

Implications of fossil conifers for the phylogenetic relationships of living families

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Fossils have played a central role in our understanding of the evolution of conifers. Interpretation of the seed cone as a compound strobilus and the homologies of the ovuliferous scales of modern conifers with the axillary dwarf shoot of Pennsylvanian forms are based on fossils. Similarly, early evolutionary trends involving the reduction, fusion, and planation of the fertile and sterile elements of the axillary dwarf shoot, leading to structures characteristic of modern families, are documented in Late Permian and Triassic conifers. However, a phylogeny elucidating the derivation of modern families from fossil forms based on shared derived features has been elusive.

The present cladistic treatment using 11 characters of ovulate cones and one of pollen grains suggests three phylogenetic groups of Late Paleozoic conifers, represented loosely by the Emporicaceae, Utrechtiaceae, and Majonicaceae of Mapes and Rothwell. The Taxaceae appears to have diverged from ancestors within the Utrechtiaceae, whereas the other modern families owe their origins to the Majonicaceae. The origin of the Taxodiaceae appears to have been biphyletic.Taxodium, Cupressus andSciadopitys are strongly linked toDolmitia of the Majonicaceae, butCryptomeria, Cunninghamia andAraucaria are grouped together and diverge basal to the former taxa.Pinus branches from a position basal to the known genera of the Majonicaceae and all modern families except the Taxaceae.Podocarpus also diverges basal toMajonica but may share an ancestor with this genus;Cepahalotaxus diverges basal to theDolmitiaPseudovoltzia subclade but distal toMajonica. Similarly, the Cheirolepidiaceae originated from basal members of the Majonicaceae and shows no close phylogenetic relationship with any modern family. Except for a strong linkage betweenCycadocarpidium and theAraucariaCunninghamia subclade, genera of the Voltziaceae appear to have branched more or less independently from within the Majonicaceae and show no strong affinity with modern conifers. Thus differences between modern conifer families are due mainly to their divergence from different Paleozoic ancestors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aase, H. C. 1915. Vascular anatomy of the megasporophylls of conifers. Bot. Gaz. 60: 277–313.

    Article  Google Scholar 

  • Archangelsky, S. &R. Cuneo. 1987. Ferugliocladaceae, a new conifer family from the Permian of Gondwana. Rev. Palaeobot. & Palynol. 51: 3–30.

    Article  Google Scholar 

  • Arnold, C. A. 1947. An introduction to paleobotany. McGraw-Hill, New York.

    Google Scholar 

  • Axsmith, B. J. &T. N. Taylor. 1997. The Triassic conifer seed coneGlyptoletpis. Rev. Palaeobot. & Palynol. 96: 71–79.

    Article  Google Scholar 

  • Beck, C. B. 1981.Archaeopteris and its role in vascular plant evolution. Pp. 193–223in K. J. Niklas (ed.), Paleobotany, paleoecology, and evolution, vol. 1. Praeger, New York.

    Google Scholar 

  • Bock, W. 1954.Primaraucaria, a new araucarian genus from the Virginia Triassic. J. Paleontol. 28: 32–42.

    Google Scholar 

  • Brunsfeld, S. J., P. S. Soltis, D. E. Soltis, P. A. Gadek &C. J. Quinn. 1994. Phylogenetic relationships among the genera of the Taxodiaceae and Cupressaceae: Evidence from rbcL sequences. Syst. Bot. 19: 253–262.

    Article  Google Scholar 

  • Calder, M. 1953. A coniferous petrified forest in Patagonia. Bull. Brit. Mus. (Nat. Hist.) Geol. 2: 97–138.

    Google Scholar 

  • Clement-Westerhof, J. A. 1984. Aspects of Permian palaeobotany and palynology. IV. The coniferOrtiseia Florin from the Val Gardena Formation of the Dolomites and the Vicentinian Alps (Italy) with special reference to a revised concept of the Walchiaceae (Goppert) Schimper. Rev. Palaeobot. & Palynol. 41:51–166.

    Article  Google Scholar 

  • —. 1987. Aspects of Permian palaeobotany and palynology. VII. The Majonicaceae, a new family of Late Permian conifers. Rev. Palaeobot. & Palynol. 52: 375–402.

    Article  Google Scholar 

  • —. 1988. Morphology and phylogeny of Paleozoic conifers. Pp. 298–337in C. B. Beck (ed.), Origin and evolution of gymnosperms. Columbia University Press, New York.

    Google Scholar 

  • Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Missouri Bot. Gard. 72: 716–793.

    Article  Google Scholar 

  • —. 1988. Major clades and relationships in “higher” gymnosperms. Pp. 218–272in C. B. Beck (ed.), Origin and evolution of gymnosperms. Columbia University Press, New York.

    Google Scholar 

  • Cuneo, R. 1985. Ejemplares fertiles deGenoites patagonica Fergulio (Buriadiaceae, Coniferopsida?) del Permico de Chubut, República Argentina. Ameghiniana 22: 269–279.

    Google Scholar 

  • De Laubenfels, D. J. 1953. The external morphology of coniferous leaves. Phytomorphology 3: 1–20.

    Google Scholar 

  • Delevoryas, T. D. &R. C. Hope. 1987. Further observations on the Late Triassic conifersCompsostrobus neotericus andVoltzia andrewsii. Rev. Palaeobot. & Palynol. 51: 59–64.

    Article  Google Scholar 

  • Doyle, J. A. &M. J. Donoghue. 1986. Seed plant phylogeny and the origin of angiosperms: An experimental cladistic approach. Bot. Rev. (Lancaster) 52: 321–431.

    Article  Google Scholar 

  • Eckenwalder, J. E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: A proposed merger. Madroño 23: 237–256.

    Google Scholar 

  • Florin, R. 1938-1945. Die Koniferen des Oberkarbons und des Unteren Perms. Palaeontographica, Abt. B, 85: 1–729.

    Google Scholar 

  • —. 1948. On the morphology and relationships of the Taxaceae. Bot. Gaz. 110: 31–39.

    Article  Google Scholar 

  • —. 1951. Evolution in cordaites and conifers. Acta Horti Berg. 15: 285–388.

    Google Scholar 

  • —. 1954. The female reproductive organs of conifers and taxads. Biol. Rev. 29: 367–389.

    Article  Google Scholar 

  • —. 1958. On Jurassic taxads and conifers from northwestern Europe and eastern Greenland. Acta Horti Berg. 17: 257–402.

    Google Scholar 

  • Galtier, J., A. C. Scott, J. H. Powell, B. W. Glover &C. N. Waters. 1992. Anatomically preserved conifer-like stems from the Upper Carboniferous of England. Proc. Roy. Soc. London B 247: 211–214.

    Article  Google Scholar 

  • Grauvogel-Starnm, L. 1978. La flore du Grès a Voltzia (Bundsandstein supérieur) des Vosges du Nord (France): Morphologie, anatomie, interprétations phylogenetique, et palèogeographique. Univ. Louis Pasteur de Strasbourg, Inst. Géol. 50: 1–225.

    Google Scholar 

  • Harris, T. M. 1935. The fossil flora of Scoresby Sound, East Greenland, Pt. 4: Ginkgoales, Coniferales, Lycopodiales and isolated fructifications. Meddel. Gronland 112: 1–176.

    Google Scholar 

  • —. 1943. The fossil coniferElatides williamsoni. Ann. Bot., n.s. 7: 325–339.

    Google Scholar 

  • —. 1953. Conifers of the Taxodiaceae from the Wealden Formation of Belgium. Mem. Inst. Roy. Sci. Nat. Belgium 126: 1–43.

    Google Scholar 

  • —. 1979. The Yorkshire Jurassic Flora. V. Coniferales. British Museum (Natural History), London.

    Google Scholar 

  • Hart, J. A. 1987. A cladistic analysis of conifers: Preliminary results. J. Arnold Arbor. 68: 269–307.

    Google Scholar 

  • Jung, W. W. 1968.Hirmerellia muensteri (Schenk) Jung nov. comb., eine bedeutsame Konifere des Mesozoikums. Palaeontographica B, 122: 55–93.

    Google Scholar 

  • Kerp, J. H. F. &J. A. Clement-Westerhof. 1991. Aspects of Permian palaeobotany and palynology. XII. The form-genusWalchiostrobus Florin reconsidered. N. Jahrb. Geol. Palaont. Abh. 183: 257–268.

    Google Scholar 

  • —,R. Poort, H. Swinkels &R. Verwer. 1989. A conifer dominated flora from the Rotliegend of Oberhausen (Saar-Nahe-Area). Courier Forschungsinst. Senckenberg 109: 137–151.

    Google Scholar 

  • ———. 1990. Aspects of Permian palaeobotany and palynology. IX. Coniferdominated Rotliegend floras from the Saar Nahe Basin (?Late Carboniferous-Early Permian; SW Germany) with special reference to the reproductive biology of early conifers. Rev. Palaeobot. & Palynol. 62: 205–248.

    Article  Google Scholar 

  • Mapes, G. 1987. Ovule inversion in the earliest conifers. Amer. J. Bot. 74: 1205–1210.

    Article  Google Scholar 

  • — &G. W. Rothwell. 1984. Permineralized ovulate cones ofLebachia from Late Palaeozoic limestones of Kansas. Palaeontology 27: 69–94.

    Google Scholar 

  • ——. 1988. Diversity among Hamilton conifers. Pp. 225–244in G. Mapes & R. H. Mapes (eds.), Regional geology and paleontology of upper Paleozoic Hamilton quarry area in southeastern Kansas. Guidebook 6, Kansas Geological Survey, Lawrence.

    Google Scholar 

  • ——. 1991. Structure and relationships of primitive conifers. N. Jahrb. Geol. Palaont. Abh. 183:269–287.

    Google Scholar 

  • —— &M. T. Haworth. 1989. Evolution of seed dormancy. Nature 337: 645–646.

    Article  Google Scholar 

  • Miller, C. N., Jr. 1975. Petrified cones and needle-bearing twigs of a new taxodiaceous conifer from the Early Cretaceous of California. Amer. J. Bot. 62: 706–713.

    Article  Google Scholar 

  • —. 1977. Mesozoic conifers. Bot. Rev. (Lancaster) 43: 217–280.

    Article  Google Scholar 

  • —. 1982. Current status of Paleozoic and Mesozoic conifers. Rev. Palaeobot. & Palynol. 37:99–144.

    Article  Google Scholar 

  • —. 1988. The origin of modern conifer families. Pp. 448–486in C. B. Beck (ed.), Origin and evolution of gymnosperms. Columbia University Press, New York.

    Google Scholar 

  • —. 1990. Stems and leaves ofCunninghamiostrobus goedertii from the Oligocene of Washington. Amer. J. Bot. 77:963–971.

    Article  Google Scholar 

  • — &J. T. Brown. 1973. A new voltzialean cone bearing seeds with embryos from the Permian of Texas. Amer. J. Bot. 60: 561–569.

    Article  Google Scholar 

  • — &C. A. LaPasha. 1983. Structure and affinities ofAthrotaxites berryi Bell, an Early Cretaceous conifer. Amer. J. Bot. 70: 772–779.

    Article  Google Scholar 

  • Nixon, K. C., W. L. Crepet, D. Stevenson &E. M. Friis. 1994. A reevaluation of seed plant phylogeny. Ann. Missouri Bot. Gard. 81: 484–533.

    Article  Google Scholar 

  • Ogura, Y. 1930. On the structure and affinities of some Cretaceous plants from Hokkaido. J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 2: 381–412.

    Google Scholar 

  • Ohana, T. &T. Kimura. 1995. Further observations ofCunninghamiostrobus yubariensis Stopes and Fujii from the Upper Yezo Group (Upper Cretaceous), Hokkaido, Japan. Trans. Proc. Palaeont. Soc. Japan, n.s. 178: 122–141.

    Google Scholar 

  • Pant, D. D. 1982. The Lower Gondwana gymnosperms and their relationships. Rev. Palaeobot. & Palynol. 37: 55–70.

    Article  Google Scholar 

  • — &D. D. Nautiyal. 1967. On the structure ofBuriadia heterophylla (Feistmantel) Se ward & Sahni and its fructifications. Philos. Trans. Roy. Soc. London 252B: 27–48.

    Article  Google Scholar 

  • Parris, K. M., A. N. Drinnan &D. J. Cantrill. 1995.Palissya cones from the Mesozoic of Australia and New Zealand. Alcheringa 19: 87–111.

    Article  Google Scholar 

  • Price, R. A. &J. M. Lowenstein. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Syst. Bot. 14: 141–149.

    Article  Google Scholar 

  • —,J. Thomas, S. H. Strauss, P. A. Gadek, C. J. Quinn &J. D. Palmer. 1993. Familial relationships of the conifers from rbcL sequence data. Amer. J. Bot. 80: 172.

    Article  Google Scholar 

  • Roselt, G. 1958. Neue Koniferen aus dem unteren Keuper und ihre Besiehungen zu verwandten fossilen und rezenten. Wiss. Z. Friedrich-Schiller-Univ. Jena, Jahrg. 5: 75–118.

    Google Scholar 

  • Rothwell, G. W. 1982.Cordaianthus duquesnensis sp. nov., anatomically preserved ovulate cones from the Upper Pennsylvanian of Ohio. Amer. J. Bot. 69: 239–247.

    Article  Google Scholar 

  • —. 1988. Cordaitales. Pp. 273–297in C. B. Beck (ed.), Origin and evolution of Gymnosperms. Columbia University Press, New York.

    Google Scholar 

  • — &R. Serbet. 1994. Lignophyte phylogeny and the evolution of spermatophytes: A numerical cladistic analysis. Syst. Bot. 19: 443–482.

    Article  Google Scholar 

  • Schweitzer, H.-J. 1963. Der weibliche Zapfen vonPseudovoltzia liebeana und seine Bedeutung für die Phylogenie der Koniferen. Palaeontographica B, 113: 1–29. 75–118.

    Google Scholar 

  • —. 1996.Voltzia hexagona (Bischoff) Geinitz aus dem Mittleren Perm Westdeutschlands. Palaeontographica B, 239: 1–22.

    Google Scholar 

  • — &M. Kirchner. 1996. Die Rhäto-Jurassichen Floren des Iran und Afghanistans: 9. Coniferophyta. Palaeontographica B, 238: 77–139.

    Google Scholar 

  • Scott, A. C. 1974. The earliest conifer. Nature 251: 707–708.

    Article  Google Scholar 

  • — &W. G. Chaloner. 1983. The earliest fossil conifer from the Westphalian B of Yorkshire. Proc. Roy. Soc. London B 220: 163–266.

    Article  Google Scholar 

  • Singh, H. 1961. The life history and systematic position ofCephalotaxus drupacea Sieb, et Aucc. Phytomorphology 11: 153–197.

    Google Scholar 

  • Stewart, W. N. &G. W. Rothwell. 1993. Paleobotany and the evolution of plants. Ed. 2. Cambridge University Press, New York.

    Google Scholar 

  • Stockey, R. A. 1975. Seeds and embryos ofAraucaria mirabilis. Amer. J. Bot. 62: 856–868.

    Article  Google Scholar 

  • —. 1977. Reproductive biology of the Cerro Cuadrado (Jurassic) fossil conifers:Pararaucaria patagonica. Amer. J. Bot. 64: 733–744.

    Article  Google Scholar 

  • —. 1978. Reproductive biology of Cerro Cuadrado fossil conifers: Ontogeny and reproductive strategies inAraucaria mirabilis (Spegazzini) Windhausen. Palaeontographica B: 166: 1–15.

    Google Scholar 

  • —. 1982. The Araucariaceae: An evolutionary perspective. Rev. Palaeobot. & Palynol. 37: 133–154.

    Article  Google Scholar 

  • —. 1990. Antarctic and Gondwana conifers. Pp. 179–191inT. N. Taylor & E. L. Taylor (eds.), Arctic paleobiology. Springer-Verlag, New York.

    Google Scholar 

  • Swofford, D. 1993. PAUP: Phylogenetic analysis using parsimony, version 3.1.1. Computer program distributed by the Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Taylor, T. N. &E. L. Taylor. 1993. The biology and evolution of fossil plants. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Thomas, B. A. &R. A. Spicer. 1987. The evolution and palaeobiology of land plants. Croom Helm, London.

    Google Scholar 

  • Townrow, J. A. 1967a. OnRissikia andMataia, podocarpaceous conifers from the Lower Mesozoic of southern lands. Pap. & Proc. Roy. Soc. Tasmania 101: 103–136.

    Google Scholar 

  • —. 1967b. OnVoltziopsis, a southern conifer of Lower Triassic age. Pap. & Proc. Roy. Soc. Tasmania 101: 173–188.

    Google Scholar 

  • Trivett, M. L. &G. W. Rothwell. 1991. Diversity among Paleozoic Cordaitales. N. Jahrb. Geol. Palaont. Abh. 183:289–305.

    Google Scholar 

  • Watson, J. 1988. The Cheirolepidiaceae. Pp. 383–447in C. B. Beck (ed.), Origin and evolution of gymnosperms. Columbia University Press, New York.

    Google Scholar 

  • White, M. E. 1981. The cones ofWalkomiella australis (Fiest.) Florin. Palaeobotanist 28-29: 75–80.

    Google Scholar 

  • Yao, X., T. N. Taylor &E. L. Taylor. 1993. The Triassic seed coneTelemachus from Antarctica. Rev. Palaeobot. & Palynol. 78: 269–276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, C.N. Implications of fossil conifers for the phylogenetic relationships of living families. Bot. Rev 65, 239–277 (1999). https://doi.org/10.1007/BF02857631

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857631

Keywords

Navigation