Skip to main content
Log in

Algal allelopathy

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The comprehensive review on allelopathy (Rice, 1979, 1984) has been largely responsible for the evolution of allelopathy as an independent branch of chemical/ physiological ecology. The allelopathic research during the last four decades drew attention to different facets of the interactions among the constituents of habitat, calling for an understanding of the role of allelopathy under different habitat conditions. In view of this, we have reviewed the existing information on allelopathic interactions in aquatic habitats with special reference to algal allelopathy. This review has been mainly confined, therefore, to different aspects of algal allelopathy such as allelopathic interactions in algae, algal toxins, bioassays, and implications of algal allelopathy.

In spite of the large number of reviews on allelopathy (see section III), no independent review appears on algal allelopathy. Although there were reports of toxins from cyanobacteria and other algae, no appreciable attempt was made to implicate algal toxins in allelopathy under field conditions. Knowledge of chemistry and biology of allelochemical can help in their potential use in controlling plant diseases and weeds. Therefore, it is urgent to study algal toxins for their involvement in ecological phenomena such as succession, for their uses as herbicides, weedicides, and pesticides, for their uses in solving some of the problems of algal ecology, and for their involvement in applied aspects.

Algal allelopathy is a manifold ecological/physiological phenomenon. Chemicals contributed by the alga can affect (1) other algae in its vicinity, (2) its own growth (i.e., autotoxicity), (3) microbes associated with it, (4) higher plants in its vicinity, and (5) accumulation and availability of nutrient ions which can influence the distribution, growth and establishment of other algae, microorganisms, and plants. However, to establish algal allelopathy of ecological relevance, it is essential to demonstrate the involvement of allelopathy under field conditions. Further, comments should be made on residence time, biological active concentration, mode of renewability, static and dynamic availability of allelochemical, and its variation, if any, with season, site, habitat, and environmental factors.

Further, many algae, especially blue-green, influence the Zooplankton population. Is it just a toxic effect of blue-green algae (BGA), or can it be included under allelopathy? This point has been debated and is discussed in the present article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Akehurst, S.C. 1931. Observations on pond life with special reference to the possible causation of swarming of phytoplankton. R. Microsc. Soc. J.51: 237–265.

    CAS  Google Scholar 

  • Anthoni, U., C. Christophersen, J. Ogard Madsen, S. Wium-Andersen &N. Jacobsen. 1980. Biologically active sulphur compounds from the green algaChara globularis. Phytochemistry19:1228–1229.

    Article  CAS  Google Scholar 

  • Armstrong, F.A.J. &G.T. Boalch. 1961. Ultraviolet absorption of sea water. Nature192:858–859.

    Article  CAS  Google Scholar 

  • Bagchi, S.N., V.S. Chauhan &J.B. Marwah. 1993. Effect of an antibiotic fromOscillatoria late-virens on growth, photosynthesis, and toxicity ofMicrocystis aeruginosa. Curr. Microbiol.26: 223–228.

    Article  CAS  Google Scholar 

  • Berglund, H. 1969. Stimulation of growth of two marine green algae by organic substance excreted byEnteromorpha linza in unialgal and axenic cultures. Physiol. Pl.22: 1069–1073.

    Article  Google Scholar 

  • Carmichael, W.W. (ed.). 1981. The water environment: Algal toxins and health. Plenum, New York.

    Google Scholar 

  • —. 1982. Chemical and toxicological studies of toxic freshwater cyanobacteria,Microcystis aeruginosa, Anabaena flos-aquae andAphanizomenon flos-aquae. S. African J. Sci.78: 367–372.

    CAS  Google Scholar 

  • —. 1986. Algal toxins. Pages 47–101in E.A. Callow (ed.), Advances in botanical research. Vol. 12. Academic Press, London.

    Google Scholar 

  • —. 1988. Toxinsof freshwater algae. Pages 121–147in A.T. Tu (ed.), Marine toxins and venoms. Vol. 3. Marcel Dekker, New York.

    Google Scholar 

  • —. 1989. Freshwater cyanobacteria (blue-green algae) toxins. Pages 3–16in C.L. Ownby and G.V. Odell (eds.), Natural toxins: Characterization, pharmacology and therapeutics. Pergamon Press, New York.

    Google Scholar 

  • —. 1992. Cyanobacteria secondary metabolites—the cyanotoxins. J. Appl. Bacteriol.72: 445–459.

    PubMed  CAS  Google Scholar 

  • —,N.A. Mahmood &E.G. Hyde. 1990. Natural toxins from cyanobacteria (blue-green algae). Pages 87–106in S. Hall & G. Strichartz (eds.), Marine toxins: Origin, structure and molecular pharmacology. ACS Symp. Ser. 418, Amer. Chem. Soc., Washington.

    Google Scholar 

  • — &I.R. Falconer. 1993. Diseases related to freshwater blue-green algal toxins, and control measures. Pages 187–209in I.R. Falconer (ed.), Algal toxins in seafood and drinking water. Academic Press, New York.

    Google Scholar 

  • Chauhan, V.S., J.B. Marwah &S.N. Bagchi. 1992. Effect of an antibiotic fromOscillatoria sp. on phytoplankters, higher plants and mice. New Phytol.120: 251–257.

    Article  CAS  Google Scholar 

  • Chou, C. H. &G.R. Waller (eds.). 1983. Allelochemicals and pheromones. Institute of Botany, Academia Sinica, Taipei, Taiwan.

    Google Scholar 

  • — &H.M. Su. 1989. Allelochemicals in marine ecosystems. Pages 119–128in C.H. Chou and G.R. Waller (eds.), Phytochemical ecology: Allelochemicals, mycotoxins and insect pheromones, and allomones. Academica Sinica Monograph Ser. No. 9, Academia Sinica, Taipei Taiwan.

    Google Scholar 

  • Codd, G.A. &S.G. Bell. 1985. Eutrophication and toxic cyanobacteria in freshwater. Water Pollut. Control84:225–232.

    Google Scholar 

  • Craigie, J.S. &J. McLachlan. 1964. Excretion of colored ultraviolet absorbing substances by marine algae. Canad. J. Bot.42: 23–33.

    Article  CAS  Google Scholar 

  • Crawford, S.A. 1979. Farm pond restoration usingChara vulgaris vegetation. Hydrobiologia62: 17–31.

    CAS  Google Scholar 

  • DeMott, W.R. 1989. The role of competition in Zooplankton succession. Pages 195–252in V. Sommer (ed.), Plankton ecology: succession in plankton communities. Springer-Verlag, New York.

    Google Scholar 

  • — &F. Moxter. 1991. Foraging on cyanobacteria by copepods: Responses to chemical defenses and resource abundance. Ecology72: 1820–1834.

    Article  Google Scholar 

  • —,Q. Zhang &W.W. Carmichael. 1991. Effect of toxic cyanobacteria on the survival and feeding of a copepod and three species ofDaphnia. Limnol. & Oceanogr.36: 1346–1357.

    CAS  Google Scholar 

  • Evans, L.V. &A.J. Trewavas. 1991. Is algal development controlled by plant growth substances? J. Phycol.27: 322–326.

    Article  CAS  Google Scholar 

  • Evans, W.G. 1986. Edaphic and allelochemic aspects of intertidal crevice sediments in relation to habitat recognition byThallassotrechus barbarae (Horn) (Coleoptera: carabidae). J. Exp. Mar. Biol. Ecol.95: 57–66.

    Article  CAS  Google Scholar 

  • Fenical, W. 1975. Halogenation in Rhodophyta: A review. J. Phycol.11: 245–259.

    CAS  Google Scholar 

  • Fisher, R.F. 1979. Allelopathy. Pages 313–330in J.G. Horsfall and E.B. Cowling (eds.), Plant disease: An advanced treatise. Academic Press, New York.

    Google Scholar 

  • Flores, E. &Wolk, C.P. 1986. Production by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. Arch. Microbiol.145: 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Fogg, G.E. &G.T. Boalch. 1958. Extracellular products in pure cultures of brown alga. Nature181: 789–790.

    Article  Google Scholar 

  • —,C. Nalewajko &W.D. Watt. 1965. Extracellular products of phytoplankton photosynthesis. Proc. Roy. Soc. London (Ser. B)162:517–534.

    CAS  Google Scholar 

  • Francis G. 1878. Poisonous Australian lake. Nature18: 11–12.

    Article  Google Scholar 

  • Gleason, F.K. &D.E. Case. 1986. Activity of the natural algicide cyanobacterin on angiosperm. Pl. Physiol.80: 834–837.

    CAS  Google Scholar 

  • Gorham, P.R. &W.W. Carmichael. 1988. Hazards of freshwater blue-greens (cyanobacteria). Pages 403–431in C.A. Lembi and J.R. Waaland (eds.), Algae and human affairs. Cambridge University Press, Cambridge.

    Google Scholar 

  • Grodzinsky, A.M. 1965. Allelopathy in the life of higher plants. Naukova Dumka, Kiev. (In Russian)

    Google Scholar 

  • Gross, E.M., C.P. Wolk &F. Juttner. 1991. Fischerellin, a new allelochemical from freshwater cyanobacteria,Fischerella muscicola. J. Phycol.27: 686–692.

    Article  CAS  Google Scholar 

  • Haney, J.F. 1987. Field studies on Zooplankton cyanobacteria interactions. New Zealand J. Mar. Freshwater Res.21: 467–475.

    Article  Google Scholar 

  • Hanson, J.A. 1973. Antibiotic activity of the chrysophyteOchromonas malhamensis. Physiol. Pl.29: 234–238.

    Article  Google Scholar 

  • Harborne J.B. 1987. Chemical signals in the ecosystem. Ann. Bot.60: 39–57.

    CAS  Google Scholar 

  • Harda, K.I., K. Matsuura, M. Suzuki, H. Oka, M.F. Watanabe, S. Oishi, A.M. Dahlem, V.R. Beasley &W.W. Carmichael. 1988. Analysis and purification of toxic peptides from cyanobacteria by reverse phase high-pressure liquid chromatography. J. Chromatogr.448: 275–283.

    Article  Google Scholar 

  • Harder, R. 1917. Ernahrungsphysologische Untersuchungen an cyanophycean, haptschlich dem endophytischenNostoc punctiforme. Z. Bot.9: 154–242.

    Google Scholar 

  • Harris, D.O. 1970. An autoinhibitory substance produced byPlatydorina caudata Kafoid. Pl. Physiol.45:210–214.

    CAS  Google Scholar 

  • —. 1971a. Growth inhibitors produced by green algae (Volvocaceae). Arch. Microbiol.76: 47–50.

    CAS  Google Scholar 

  • —. 1971b. Inhibition of oxygen evolution inVolvox globator by culture filtrates fromPandorina morum. Microbios3: 73–75.

    Google Scholar 

  • — &CD. Caldwell. 1974. Possible mode of action of a photosynthetic inhibitor produced byPandorina morum. Arch. Microbiol.95: 193–204.

    Article  CAS  Google Scholar 

  • — &M.C. Parekh. 1974. Further observations on an algicide produced byPandorina morum, a colonial green flagellate. Microbios9: 259–265.

    PubMed  CAS  Google Scholar 

  • Horsley, S.B. 1991. Allelopathy. Pages 167–183in M.E. Avery, M.G.R. Cannell & C.K. Ong (eds.), Biophysical research for Asian agroforestry. Winrock International South Asia Books.

  • Inderjit &K.M.M. Dakshini. 1990. The nature of interference potential ofPluchea lanceolata (DC) C.B. Clarke (Asteraceae). Pl. & Soil122: 298–302.

    Article  Google Scholar 

  • —. 1991a. Investigation on some aspects of chemical ecology of cogongrass,Imperata cylindrica (L.) Beauv. J. Chem. Ecol.17: 343–352.

    Article  CAS  Google Scholar 

  • —. 1991b. Hesperetin 7-rutinoside (hesperidin) and taxifolin 3 arabinoside as germination and growth inhibitors in the soils associated with the weed,Pluchea lanceolata (DC.) C.B. Clarke (Asteraceae). J. Chem. Ecol.17: 1585–1591.

    Article  CAS  Google Scholar 

  • —. 1992a. Formononetin 7-0-glucoside (ononin), an additional growth inhibitor from the soils associated with the weed,Pluchea lanceolata (DC.) C.B. Clarke (Asteraceae). J. Chem. Ecol.18: 713–718.

    Article  CAS  Google Scholar 

  • —. 1992b. Interference potentialof Pluchea lanceolata (Asteraceae): Growth and physiological responses of asparagus bean,Vigna unguiculata var.sesquipedalis. Amer. J. Botany79: 977–981.

    Article  Google Scholar 

  • Jorgensen, E.G. 1956. Growth-inhibiting substances formed by algae. Physiol. Pl.9: 712–726.

    Article  CAS  Google Scholar 

  • —. 1962. Antibiotic substances from cells and culture solutions of unicellular algae with special reference to some chlorophyll derivatives. Physiol. Pl.15: 530–545.

    Article  CAS  Google Scholar 

  • — &E.S. Nielsen. 1961. Effect of filtrates from cultures of unicelluar algae on the growth ofStaphylococcus aureus. Physiol. Pl.14: 896–908.

    Article  Google Scholar 

  • Katayama, T. 1962. Volatile constituents. Pages 467–473in R.A. Lewin (ed.), Physiology and biochemistry of algae. Academic Press, New York.

    Google Scholar 

  • Keating, K.L 1977. Allelopathic influences on blue-green sequence in a eutrophic lake. Science196: 885–887.

    Article  PubMed  CAS  Google Scholar 

  • —. 1978. Blue-green algal inhibition of diatom growth: Transition from mesotrophic to eutrophic community structure. Science199: 971–973.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, K.L. &J.J. Gilbert. 1992. Variation in herbivore response to chemical defences: Zooplankton foraging on toxic cyanobacteria. Ecology73: 2208–2217.

    Article  Google Scholar 

  • Kustenko, N.G. 1975. Effect of filtrates of culture media on the algae,Skeletonema costatum andThalassionema nitzschioides on their own growth. Fiziol. Rast.21: 1034–1037.

    Google Scholar 

  • Lampert W. 1982. Further studies on the effect of the toxic blue-greenMicrocystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol.95: 207–220.

    Google Scholar 

  • Lefevere, M. &M. Nisbet. 1948. Sur la secretion par certaines espèces d’Algnes de substances inhibitrices d’autres espèces d’Algnes. C.R. Acad. Sci.226: 107–109.

    Google Scholar 

  • —,H. Jakob &M. Nisbet. 1950. Sur la secretion par certaines Cyanophytes, de sustances algostatiques dans 1er collections d’eau naturelles. C.R. Acad. Sci.230: 2226–2227.

    Google Scholar 

  • Lovett, J.V. 1991. Changing perceptions of allelopathy and biological control. Biol. Agric. Horti.8:89–100.

    Google Scholar 

  • Lukavsky, J. 1985. A simple cultivation unit for the cultivation of algal growth potenial and toxicity of water of solid media. Water Res.19: 269–270.

    Article  Google Scholar 

  • —. 1992. The evaluation of algal growth potential (AGP) and toxicity of water by miniaturized growth bioassay. Water Res.26: 1409–1413.

    Article  CAS  Google Scholar 

  • Maksimova, I.V. &M.N. Pimenova. 1969. Liberation of organic acids by green unicellular algae. Microbiology38: 64–70.

    Google Scholar 

  • Martin, D.F., E.C. Kutt &Y.S. Kim. 1974. Use of a multiple diffusion chamber unit in culture studies: Application toGomphosphaeria aponina. Environm. Lett.7: 39–46.

    Article  Google Scholar 

  • Mason, C.P. &F.K. Gleason. 1981. An antibiotic fromScytonema hofmanni (Cyanophyta). J. Phycol. (suppl.)17: 8.

    Google Scholar 

  • —,K.R. Edwards, R.E. Carlson, J. Pignatello, F.K. Gleason &J.M. Wood. 1982. Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium,Scytonema hofmanni. Science215: 400–402.

    Article  PubMed  CAS  Google Scholar 

  • Mautner, H.G., G.M. Gardner &R. Pratt. 1953. Antibiotic activity of seaweed extracts. II.Rhodomela larix. J. Am. Pharm. Assoc., Sci. Ed.42: 294–296.

    Article  CAS  Google Scholar 

  • McCraken, M.D., R.E. Middaugh &R.S. Middaugh. 1980. A chemical characterization of an algal inhibitor obtained fromChlamydomonas. Hydrobiologia70: 271–276.

    Article  Google Scholar 

  • McLachlan, J. &J.S. Craigie. 1964. Algal inhibition by yellow ultraviolet absorbing substances fromFucus vesiculosus. Canad. J. Bot.42: 287–292.

    CAS  Google Scholar 

  • Moebus, K. 1972. Seasonal changes in antibacterial activity of North Sea water. Mar. Biol.13: 1–13.

    Article  Google Scholar 

  • Monahan, T.J. &F.R. Trainor. 1970. Stimulatory properties of filtrate from the green alga,Hormotila blennista. I. Description. J. Phycol.6: 263–269.

    CAS  Google Scholar 

  • ——. 1971. Stimulatory properties of filtrate from green alga,Hormotila blennista. II. Fractionation of filtrate. J. Phycol.7: 170–176.

    CAS  Google Scholar 

  • Moore, R.E., C. Cheuk, X.G. Yang &G.M.L. Patterson. 1987a. Hapalinodoles, antibacterial and antimycotic alkaloids from cyanophyte,Hapalosiphon fontinalis. J. Organic Chem.52:1036–1043.

    Article  CAS  Google Scholar 

  • —,X.G. Yang G.M.L. Patterson 1987b. Fontonamide and anhydrohapaloxinodole A, two new alkaloids from the blue-green algaHapalosiphon fontinalis. J. Organic Chem.52:3773–3777.

    Article  CAS  Google Scholar 

  • ———,R. Banjauklian &T.A. Smitka. 1989. Hapalonamides and other oxidized hapalinodoles fromHapalosiphonfontinalis. Phytochemistry28: 1565–1567.

    Article  CAS  Google Scholar 

  • Murphy, T.P., D.R.S. Lean &C. Nalewajko. 1976, Blue-green algae: Their excretion of Fe-selective chelators enables them to dominate other algae. Science192: 900.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, G.M.L., D.O. Harris &W.S. Cohen. 1979. Inhibition of photosynthetic and mitochondrial electron transport by a toxic substance isolated from the alga,Pandorina morum. Pl. Sci. Lett.15: 293–300.

    Article  CAS  Google Scholar 

  • Pedersen, M. &E.J. DaSilva. 1973. Simple brominated phenols in the blue-green alga,Calothrix brevissima West. Planta115: 83–86.

    Article  CAS  Google Scholar 

  • —,P. Saenger &L. Fries. 1974. Simple brominated phenols in red algae. Phytochemistry13: 2273–2279.

    Article  CAS  Google Scholar 

  • Pignatello, J.J., J. Porwall, R. E. Carlson, A. Xavier, F. K. Gleason &J.M. Wood. 1983. Structure of the antibiotic cyanobacterin, a chlorine-containingY-lactone from freshwater cyanobacterium,Scytonema hofmanni. J. Organic Chem.48: 4035–4038.

    Article  CAS  Google Scholar 

  • Pratt, D.M. 1966. Competition betweenSkelatonema costatum andOlisthodiscus luteus in Narragansett Bay and in culture. Limnol. & Oceanogr.11: 447–455.

    Article  Google Scholar 

  • Pratt, R. 1940. Influence of the size of the inoculum on the growth ofChlorella vulgaris in freshly prepared culture medium. Amer. J. Bot.27: 52–56.

    Article  CAS  Google Scholar 

  • —. 1942. Studies onChlorella vulgaris. V. Some properties of the growth inhibitor formed byChlorella cells. Amer. J. Bot.29:142–148.

    Article  CAS  Google Scholar 

  • —. 1944. Studies onChlorella vulgaris. IX. Influence on the growth ofChlorella of continuous removal of chlorellin from the solution. Amer. J. Bot.31: 418–421.

    Article  CAS  Google Scholar 

  • —. 1948. Studies onChlorella vulgaris. XI. Relation between surface tension and accumulation of chlorellin. Amer. J. Bot.35: 634–637.

    Article  CAS  Google Scholar 

  • — &J. Fong. 1940. Studies onChlorella vulgaris. II. Further evidence thatChlorella cells form a growth-inhibiting substance. Amer. J. Bot.27: 431–436.

    Article  CAS  Google Scholar 

  • —,T.C. Daniels, J.J. Eiler, J.B. Gunnison, W.D. Kumbler, J.F. Oneto, H.H. Spoehr, G.L. Harder, H.W. Milner, J. H.C. Smith &H.H. Strain. 1944. Chlorellin, an antibacterial substance fromChlorella. Science99: 351.

    Article  PubMed  CAS  Google Scholar 

  • Procter, V.W. 1957. Some controlling factors in the distribution ofHaematococcus pluvialis. Ecology38: 457–462.

    Article  Google Scholar 

  • Pryce, R.J. 1972. The occurrence of lunularic and abscisic acids in plants. Phytochemistry11: 1759–1761.

    Article  CAS  Google Scholar 

  • Putnam, A.R. 1985. Weed allelopathy. Pages 131–155in S.O. Duke (ed.), Weed physiology. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • — &Duke W.B. 1978. Allelopathy in agroecosystems. Annual Rev. Phytopathol.16:431–451.

    Article  Google Scholar 

  • — &C.S. Tang (eds.). 1986. The science of allelopathy. Wiley Interscience, New York.

    Google Scholar 

  • Ragan, M. A. &J.S. Craigie. 1978. Phenolic compounds in brown and red algae. Pages 157–179in J.A. Hellebust and J.S. Craigie (eds.), Handbook of phycological methods: Physiological and biochemcial methods. Cambridge University Press, London.

    Google Scholar 

  • Rice, E.L. 1979. Allelopathy—an update. Bot. Rev.45: 15–109.

    CAS  Google Scholar 

  • —. 1984. Allelopathy. Academic Press, Orlando, Florida.

    Google Scholar 

  • Rizvi, S.J.H. &V. Rizvi (eds.). 1992. Allelopathy: Basic and applied aspects. Chapman and Hall, London.

    Google Scholar 

  • Schwartz, R.E., C.F. Hirsch, J.P. Springer, D.J. Pettibone &D.L. Zink. 1987. Unusual cyclopropane-containing hapalindolinones from a cultured cyanobacterium. J. Organic Chem.52: 3704–3706.

    Article  CAS  Google Scholar 

  • Sieburth, J.M. 1960. Acrylic acid, an antibiotic principle inPhaeocystis blooms in Antarctic waters. Science132:676–677.

    Article  PubMed  CAS  Google Scholar 

  • Steemann-Nielsen, E. 1973. Hydrobiologia. Polyteknisk, Florlag, Lynby.

    Google Scholar 

  • Theiss, W.W. &W.W. Carmichael. 1986. Physiological effect of a peptide toxin produced by the freshwater cyanobacteria (blue-green algae),Microcystis aeruginosa strain 7820. Pages 353–364in P.S. Steyn and R. Vleggaar (eds.), Mycotoxins and Phycotoxins, Elsevier, Amsterdam.

    Google Scholar 

  • Thompson, A.C. (ed.). 1985. The chemistry of allelopathy. Amer. Chem. Soc., Washington, D.C.

    Google Scholar 

  • Waller, G.R. (ed.). 1987. Allelochemicals, role in agriculture and forestry. Amer. Chem. Soc., Washington, DC.

    Google Scholar 

  • Watanabe, M.M., K. Kaya &N. Takanwia. 1992. Fate of the toxic cyclic heptapeptides, the microcystins, from blooms ofMicrocystis (cyanobacteria) in a hypertrophic lake. J. Phycol.28: 761–767.

    Article  CAS  Google Scholar 

  • Weinstein, B., T.C. Rold, C.E. Harrell JR.,M.W. Burns III &J.R. Waaland. 1975. Reexamination of the bromophenols in the red alga,Rhodomela larix. Phytochemistry14: 2667–2670.

    Article  CAS  Google Scholar 

  • Wium-Andersen, S., U. Anthoni, C. Christophersen &G. Haueu. 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos39: 187–190.

    Article  Google Scholar 

  • Wolf, J.M. &E.L. Rice. 1979. Allelopathic interactions among algae. J. Chem. Ecol.5: 533–542.

    Article  Google Scholar 

  • Wyatt, T. &Y. Pazos. 1992. Harmful algal blooms. Pages 1 & 5in Harmful Algae News. An IOC newsletter on toxic algae and algae blooms. UNESCO, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inderjit, Dakshini, K.M.M. Algal allelopathy. Bot. Rev 60, 182–196 (1994). https://doi.org/10.1007/BF02856576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856576

Keywords

Navigation