Skip to main content
Log in

The tapetum and systematics in monocotyledons

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

This paper critically reviews the homologies and distribution of tapetum types in monocotyledons, in relation to their systematics. Two main types of tapetum are widely recognised: secretory and plasmodial, although intermediate types occur, such as the “invasive” tapetum described inCanna. In secretory tapeta, a layer of cells remains intact around the anther locule, whereas in the plasmodial type a multinucleate tapetal plasmodium is formed in the anther locule by fusion of tapetal protoplasts. In invasive tapeta, the cell walls break down and tapetal protoplasts invade the locule without fusing to form a plasmodium. When examining tapetum type, it is often necessary to dissect several developmental stages of the anthers. Secretory and plasmodial tapeta are both widely distributed in monocotyledons and have probably evolved several times, although there may be some systematic significance within certain groups. Among early branching taxa,Acorus andTofieldia have secretory tapeta, whereas Araceae and Alismatales are uniformly plasmodial. The tapetum is most diverse within Commelinanae, with both secretory and plasmodial types, and some Zingiberales have an invasive tapetum. Lilianae (Dioscoreales, Liliales, and Asparagales) are almost uniformly secretory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Arkal, G. D. &S. N. Ramaswamy. 1973. Embryology ofBurmannia pusilla (Wall. ex Miers) THW. and its taxonomic status. Beitr. Biol. Pflanzen 49: 35–46.

    Google Scholar 

  • ——. 1980. Embryology ofEriocaulon hookerianum Stapf, and the systematic position of Eriocaulaceae. Bot. Not. 133: 295–309.

    Google Scholar 

  • Asplund, I. 1972. Embryological studies in the genusTypha. Svensk Bot. Tidsk. 66: 1–17.

    Google Scholar 

  • Blackmore, S. &P. R. Crane. 1988. The systematic implications of pollen and spore ontogeny. Pages 83–115in C. J. Humphries (ed.), Ontogeny and systematics. Colombia University Press, New York.

    Google Scholar 

  • Boehm, K. 1931. Embryologische Untersuchungen an Zingiberaceen. Planta 14: 411–440.

    Article  Google Scholar 

  • Carneil, K. 1952. Das Verhalten der Kerne im Tapetum der Angiospermen mit besonder Berücksichtigung von Endenmitosen und sogenannten Endomitosen. Österr. Bot. Zeit. 99: 318–362.

    Article  Google Scholar 

  • —. 1963. Das Antherentapetum. Österr. Bot. Zeit. 110: 145–176.

    Article  Google Scholar 

  • Chase, M. W., M. R. Duvall, H. G. Hills, J. G. Conran, A. V. Cox, L. E. Eguiarte, J. Hartwell, M. F. Fay, L. R. Caddick, K. M. Cameron &S. Hoot. 1995a. Molecular systematics of Lilianae. Pages 109–137in P. J. Rudall et al. (eds.), Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.

    Google Scholar 

  • —,D. W. Stevenson, P. Wilkin &P. J. Rudall. 1995b. Monocot systematics: a combined analysis. Pages 685–730in P. J. Rudall et al. (eds.), Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.

    Google Scholar 

  • —,P. J. Rudall &J. G. Conran. 1996. New circumscriptions and anew family of asparagoid lilies: genera formerly included in Anthericaceae. Kew Bull. 51: 667–680.

    Article  Google Scholar 

  • Cheah, C. H. &B. C. Stone. 1975. Embryo sac and microsporangium development inPandanus (Pandanaceae). Phytomorphology 25: 228–238.

    Google Scholar 

  • Clément, C. & J. C. Audran. 1993a. Cytochemical and ultrastructural evolution of orbicules inLilium. Pl. Syst. Evol. (Suppl.) 7: 63–74.

    Google Scholar 

  • ——. 1993b. Orbicule wall surface characteristics inLilium (Liliaceae). An ultrastructural and cytochemical approach. Grana 32: 348–353.

    Google Scholar 

  • Cooper, D. C. 1933. Nuclear divisions in the tapetal cells of certain angiosperms. Amer. J. Bot. 20: 358–364.

    Article  Google Scholar 

  • Dahlgren, R. M. T. &T. Clifford. 1982. The monocotyledons: a comparative study. Academic Press, London.

    Google Scholar 

  • —— &P. F. Yeo. 1985. The families of the monocotyledons. Springer-Verlag, Berlin.

    Google Scholar 

  • Davis, G. L. 1966. Systematic embryology of the angiosperms. John Wiley, New York.

    Google Scholar 

  • Ducker, S. C., J. M. Pettitt &R. B. Knox. 1978. Biology of Australian seagrasses: pollen development and submarine pollination inAmphibolis antarctica andThalassodendron ciliatum (Cymodoceaceae). Austral. J. Bot. 26: 265–285.

    Article  Google Scholar 

  • Dunbar, A. 1973. Pollen development in theEleocharispalustris group (Cyperaceae). I. Ultrastructure and ontogeny. Bot. Not. 126: 197–254.

    Google Scholar 

  • Echlin, P. 1971. The role of the tapetum during microsporogenesis of angiosperms. Pages 41–61in J. Heslop-Harrison (ed.), Pollen: development and physiology. Butterworths, London.

    Google Scholar 

  • — &H. Godwin. 1968. The ultrastructure and ontogeny of pollen inHelleborus foetidus L. I. The development of the tapetum and Ubisch bodies. J. Cell Sci. 3: 161–174.

    PubMed  CAS  Google Scholar 

  • Garrigues, M. R. 1951. Sur les anomalies mitotiques du tapis des étamines. Rev. Gén. Bot. Paris 58: 305–318.

    Google Scholar 

  • Geerinck, D. 1968. Considérations taxonomiques au sujet des Haemodoraceae et des Hypoxidaceae (Monocotyledones). Bull. Soc. Roy. Bot. Belg. 101: 265–278.

    Google Scholar 

  • Grayum, M. H. 1987. A summary of evidence and arguments supporting the removal ofAcorus from the Araceae. Taxon 36: 723–729.

    Article  Google Scholar 

  • Hamann, U. 1966. Embryologische, morphologische-anatomische und systematische Untersuchungen an Philydraceen. Willdenowia 4: 1–178.

    Google Scholar 

  • Hayashi, Y. 1960. On the microsporogenesis and pollen morphology in the family Magnoliaceae. Sci. Rep. Tôhoku Univ. Ser. IV (Biol.) 26: 45–52.

    Google Scholar 

  • Heslop-Harrison, J. &H. G. Dickinson. 1969. Time relationships of sporopollenin synthesis associated with tapetum and microspores inLilium. Planta 84: 199–124.

    Article  Google Scholar 

  • Hesse, M. 1993. Pollenkitt development and composition inTilia platyphyllos (Tiliaceae) analysed by conventional and energy filtering TEM. Pl. Syst. Evol. (Suppl.) 7: 39–52.

    Google Scholar 

  • — &M. W. Hess. 1993. Recent trends in tapetum research. A cytological and methodological review. Pl. Syst. Evol. (Suppl.) 7: 127–145.

    Google Scholar 

  • Huysmans, S., G. El-Ghazaly &E. Smets. 1998. Orbicules in angiosperms. Morphology, function, distribution, and relation with tapetum types. Bot. Rev. (Lancaster) 64: 240–272.

    Google Scholar 

  • Islam, A. S. 1950. A contribution to the life history ofOttelia alismoides Pers. J. Indian Bot. Soc. 29: 79–91.

    Google Scholar 

  • Keijzer, C. J. &M. T. M. Willemse. 1988. Tissue interactions in the developing locule ofGasteria verrucosa during microsporogenesis. Acta Bot. Neerl. 37: 493–508.

    Google Scholar 

  • Kircher, P. 1986. Untersuchungen zur Blüten-und Infloreszenzmorphologie, Embryologie und Systematik der Restionaceen im Vergleich mit Gramineen und verwandten Familien. Diss. Bot. 94: 1–218.

    Google Scholar 

  • Kirpes, C. C., L. G. Clark &N. R. Lersten. 1996. Systematic significance of pollen arrangement in microsporangia of Poaceae and Cyperaceae: review and observations on representative taxa. Amer. J. Bot. 83: 1609–1622.

    Article  Google Scholar 

  • Kress, W. J. 1986. Exineless pollen structure and pollination systems of tropicalHeliconia (Heliconiaceae). Pages 329–345in S. Blackmore & I. K. Ferguson (eds.), Pollen and spores: form and function. Linnean Society Symposium Series No. 12. Academic Press, London.

    Google Scholar 

  • — &D. E. Stone. 1982. Nature of the sporoderm in monocotyledons, with special reference to the pollen grains ofCanna andHeliconia. Grana 21: 129–148.

    Google Scholar 

  • Kronestedt-Robards, E. C. &J. R. Rowley. 1989. Pollen grain development and tapetal changes inStrelitzia regime (Strelitziaceae). Amer. J. Bot. 76: 856–870.

    Article  Google Scholar 

  • Maheshwari, P. 1950. An introduction to the embryology of the angiosperms. McGraw-Hill, New York.

    Google Scholar 

  • Mascré, M. &R. Thomas. 1930. Le tapis staminal (assise nourricière du pollen) chez les angiospermes. Bull. Soc. Bot. France 47: 654–664.

    Google Scholar 

  • Mepham, R. H. &G. R. Lane. 1969. Formation and development of the tapetal periplasmodium inTradescantia bracteata. Protoplasma 68: 175–192.

    Article  Google Scholar 

  • Mdller-Doblies, U. 1969. Über die Blütenstüde und Blüten souie zur Embryologie vonSparganium. Bot. Jahrb. Syst. 89: 359–450.

    Google Scholar 

  • Nanda, K. &S. C. Gupta. 1977. Development of tapetal periplasmodium inRhoeo spathacea. Phytomorphology 27: 308–314.

    Google Scholar 

  • Pacini, E. 1997. Tapetum character states: analytical keys for tapetum types and activities. Canad. J. Bot. 75: 1448–1459.

    Article  Google Scholar 

  • — &G. G. Franchi. 1983. Pollen grain development inSmilaxaspera L. and possible functions of the loculus. Pages 183–190in D. L. Mulcahy & E. Ottaviano (eds.), Pollen: biology and implications for plant breeding. Elsevier, Amsterdam.

    Google Scholar 

  • — &B. E. Juniper. 1983. The ultrastructure of the formation and development of the amoeboid tapetum inArum italicum Miller. Protoplasma 117: 116–129.

    Article  Google Scholar 

  • —,G. G. Franchi &M. Hesse. 1985. The tapetum: its form, function and possible phytogeny in Embryophyta. Pl. Syst. Evol. 149: 155–185.

    Article  Google Scholar 

  • —,P. E. Taylor, M. B. Singh &R. B. Knox. 1992. Development of plastids in pollen and tapetum of rye-grass,Lolium perenne L. Ann. Bot. 70: 179–188.

    Google Scholar 

  • Panchaksharappa, M. G. 1962. Embryological studies in the family Zingiberaceae. I.Costus speciosus. Phytomorphology 12: 418–430.

    Google Scholar 

  • Pettitt, J. M. 1981. Reproduction in seagrasses: pollen development inThallasia hemprichii, Halophila stipulacea andThalassodendron ciliatum. Ann. Bot. 48: 609–622.

    Google Scholar 

  • — &A. C. Jermy. 1975. Pollen in hydrophilous angiosperms. Micron 5: 377–405.

    Google Scholar 

  • Rowley, J. R. &A. Dunbar. 1996. Pollen development inCentrolepis aristata (Centrolepidaceae). Grana 35: 1–15.

    Google Scholar 

  • — &J. J. Flynn. 1990–1991.Tambourissa (Monimiaceae). Microspore development in the tetrad period. Ann. Sci. Nat. Bot. Paris, 13 sér, 11: 125–147.

    Google Scholar 

  • — &J. J. Skvarla. 1986. Development of the pollen grain wall inCanna. Nordic J. Bot. 6: 39–65.

    Google Scholar 

  • —,N. I. Gabarayeva &B. Walles. 1992. Cyclic invasion of tapetal cells into loculi during microspore development inNymphaea colorata (Nymphaeaceae). Amer. J. Bot. 79: 801–808.

    Article  Google Scholar 

  • Rudall, P. J. &M. W. Chase. 1996. Systematics of Xanthorrhoeaceaesensu lato: evidence for polyphyly. Telopea 6: 629–647.

    Google Scholar 

  • — &L., Clark. 1992. The megagametophyte in Labiatae. Pages 65–84in R. M. Harley & T. R. Reynolds (eds.), Advances in labiate science. Royal Botanic Gardens, Kew.

    Google Scholar 

  • — &C. A. Furness. 1997. Systematics ofAcorus: ovule and anther. Int. J. Pl. Sci. 158: 640–651.

    Article  Google Scholar 

  • ——,M. W. Chase &M. F. Fay. 1997. Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Canad. J. Bot. 75: 408–430.

    Google Scholar 

  • -,D. W. Stevenson & H. P. Linden In press. Structure and systematics ofHanguana, a monocotyledon of uncertain affinity. Australian Systematic Botany 11.

  • —,M. W. Chase, D. F. Cutler, J. Rusby &A. de Bruijn. 1998. Anatomical and molecular systematics of Asteliaceae and Hypoxidaceae. Bot. J. Linn. Soc. 127: 1–42.

    Article  Google Scholar 

  • Sachar, R. C. &U. Arora. 1963. Some embryological aspects ofAmomum dealbarum andHedychium acuminatum. Bot. Gaz. 124: 353–360.

    Article  Google Scholar 

  • Simpson, M. G. 1989. Pollen wall development ofXiphidium coentleum (Haemodoraceae) and its systematic implications. Ann. Bot. 64: 257–269.

    Google Scholar 

  • Smith, F. H. 1933. Nuclear divisions in the tapetal cells ofGaltonia candicans. Amer. J. Bot. 20: 341–347.

    Article  Google Scholar 

  • Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastr. Res. 26: 31–43.

    Article  CAS  Google Scholar 

  • Stenar, H. 1925. Embryologische Studien I u. II.-I. Zur Embryologie einiger Columniferen. II. Die Embryologie der Amaryllideen. Akademische Abhandlung Uppsala, Uppsala.

    Google Scholar 

  • —. 1927. Zur Entwicklungsgeschichte der gattimgAnigosanthus Labill. Bot. Not. 1927: 104–114.

    Google Scholar 

  • Stevenson, D. W. &H. Loconte. 1995. Cladistic analysis of monocot families. Pages 543–578in P. J. Rudall et al. (eds.), Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.

    Google Scholar 

  • — &S. J. Owens. 1978. Some aspects of the reproductive morphology ofGibasis venustula (Kunth) D. R. Hunt (Commelinaceae). Bot. J. Linn. Soc. 77: 157–175.

    Article  Google Scholar 

  • Stone, D. E., S. C. Sellers &W. J. Kress. 1979. Ontogeny of exineless pollen inHeliconia, a banana relative. Ann. Missouri Bot. Gard. 66: 701–730.

    Article  Google Scholar 

  • ———. 1981. Ontogenetic and evolutionary implications of a neotenous exine inTapeinochilos (Zingiberales: Costaceae) pollen. Amer. J. Bot. 68: 49–63.

    Article  Google Scholar 

  • Theilade, I. &J. Theilade. 1996. Ontogeny of pollen grains inZingiber spectabile (Zingiberaceae). Grana 35: 162–170.

    Article  Google Scholar 

  • Tiwari, S. C. &B. E. S. Gunning. 1986a. Development of tapetum and microspores inCanna L.: an example of an invasive but non-syncytial tapetum. Ann. Bot. 57: 557–563.

    Google Scholar 

  • ——. 1986b. Cytoskeleton, cell surface and the development of invasive plasmodial tapetum inTradescantia virginiana L. Protoplasma 133: 89–99.

    Article  Google Scholar 

  • ——. 1986c. An ultrastructural, cytochemical and immunofluorescence study of post meiotic development of plasmodial tapetum inTradescantia virginiana L. and its relevance to the pathway of sporopollenin secretion. Protoplasma 133: 100–114.

    Article  Google Scholar 

  • ——. 1986d. Colchicine inhibits plasmodium formation and disrupts pathways of sporopollenin secretion in the anther tapetum ofTradescantia virginiana L. Protoplasma 133: 115–128.

    Article  CAS  Google Scholar 

  • ——. 1986e. Development and cell surface of a non-syncytial invasive tapetum inCanna: ultrastructural, freeze-substitution, cytochemical and immunofluorescence study. Protoplasma 134: 1–16.

    Article  Google Scholar 

  • Van der Ham, R. W. J. M. 1991. Pollen morphology of the Stemonaceae. Blumea 36: 127–159.

    Google Scholar 

  • Wirz, H. 1910. Beitrage zur Entwicklungsgeschichte vonSciaphila spec. und vonEpirrhizanthes elongata Bl. Flora 101: 395–446.

    Google Scholar 

  • Wunderlich, R. 1954. Über das Antherentapetum mit besonderer Berücksichtigung seiner Kernzahl. Österr. Bot. Zeit. 101: 1–63.

    Article  Google Scholar 

  • Yamashita, T. 1976. Über die pollenbildung beiHalodule pinifolia undH. uninervis. Beitr. Biol. Pflanzen 52: 217–226.

    Google Scholar 

  • Zavada, M. S. 1984. Pollen wall development ofAustrobaileya maculat a. Bot. Gaz. 145: 11–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furness, C.A., Rudall, P.J. The tapetum and systematics in monocotyledons. Bot. Rev 64, 201–239 (1998). https://doi.org/10.1007/BF02856565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856565

Keywords

Navigation