Skip to main content
Log in

In vitro and direct in vivo testing of mixture-based combinatorial libraries for the identification of highly active and specific opiate ligands

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The use of combinatorial libraries for the identification of novel opiate and related ligands in opioid receptor assays is reviewed. Case studies involving opioid assays used to demonstrate the viability of combinatorial libraries are described. The identification of new opioid peptides composed of L-amino acids, D-amino acids, or L-, D-, and unnatural amino acids is reviewed. New opioid compounds have also been identified from peptidomimetic libraries, such as peptoids and alkylated dipeptides, and those identified from acyclic (eg, polyamine, urea) and heterocyclic (eg, bicyclic guanidine) libraries are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pert CB, Snyder SH. Properties of opiate-receptor binding in rat brain.Proc Natl Acad Sci USA. 1973;70:2243–2247.

    Article  CAS  PubMed  Google Scholar 

  2. Simon EJ, Hiller JM, Edelman I. Stereospecific binding of the potent narcotic analgesic (3H) etorphine to rat-brain homogenate.Proc Natl Acad Sci USA. 1973;70:1947–1949.

    Article  CAS  PubMed  Google Scholar 

  3. Terenius L. Characteristics of the “receptor” for narcotic analgesics in synaptic plasma fraction from rat brain.Acta Pharmacol Toxicol (Copenh). 1973;33:377–384.

    CAS  Google Scholar 

  4. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity.Nature. 1975;258:577–579.

    Article  CAS  PubMed  Google Scholar 

  5. Fowler CJ, Fraser GL. Mu-, delta-, and kappa-opioid receptors and their subtypes. A critical review with emphasis on radioligand binding experiments.Neurochem Int. 1994;24:401–426.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Mestek A, Liu J, Hurley JA, Yu L. Molecular cloning and functional expression of a mu opioid receptor from rat brain.Mol Pharmacol. 1993;44:8–12.

    CAS  PubMed  Google Scholar 

  7. Fukuda K, Kato S, Mori K, Nishi M, Takeshima H. Primary structures and expression from cDNAs of rat opioid receptor delta and mu subtypes.FEBS Lett. 1993;327:311–314.

    Article  CAS  PubMed  Google Scholar 

  8. Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG. The delta opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization.Proc Natl Acad Sci USA. 1992;89:12048–12052.

    Article  CAS  PubMed  Google Scholar 

  9. Evans CJ, Jr, Keith DE, Jr, Morrison H, Magendzo K, Edwards RH. Cloning of delta opioid receptor by functional expression.Science. 1992;258:1952–1955.

    Article  CAS  PubMed  Google Scholar 

  10. Yasuda K, Raynor K, Kong H, et al. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain.Proc Natl Acad Sci USA. 1993;90:6736–6740.

    Article  CAS  PubMed  Google Scholar 

  11. Cwirla SE, Peters EA, Barrett RW, Dower WJ. Peptides on phage: a vast library of peptides for identifying ligands.Proc Natl Acad Sci USA. 1990;87:6378–6382.

    Article  CAS  PubMed  Google Scholar 

  12. Devlin JJ, Panganiban LC, Devlin PE. Random peptide libraries: a source of specific protein binding molecules.Science. 1990;249:404–406.

    Article  CAS  PubMed  Google Scholar 

  13. Scott JK, Smith GP. Searching for peptide ligands with an epitope library.Science. 1990;249:386–390.

    Article  CAS  PubMed  Google Scholar 

  14. Geysen HM, Rodda SJ, Mason TJ. A priori delineation of a peptide which mimics a discontinuous antigenic determinant.Mol Immunol. 1986;23:709–715.

    Article  CAS  PubMed  Google Scholar 

  15. Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ. A new type of synthetic peptide library for identifying ligand-binding activity.Nature. 1991;354:82–84.

    Article  CAS  PubMed  Google Scholar 

  16. Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery.Nature. 1991;354:84–86.

    Article  CAS  PubMed  Google Scholar 

  17. Houghten RA, Appel JR, Blondelle SE, Cuervo JH, Dooley CT, Pinilla C. The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides.Biotechniques. 1992;13:412–421.

    CAS  PubMed  Google Scholar 

  18. Houghten RA, Pinilla C, Appel JR, et al. Mixture-based synthetic combinatorial libraries.J Med Chem. 1999;42:3743–3778.

    Article  CAS  PubMed  Google Scholar 

  19. Merrifield RBJ. Solid phase peptide synthesis, I: the synthesis of a tetrapeptide.J Am Chem Soc. 1963;85:2149–2154.

    Article  CAS  Google Scholar 

  20. Merrifield B. Solid phase synthesis.Science. 1986;232:341–347.

    Article  CAS  PubMed  Google Scholar 

  21. Frank R. Spot-synthesis: an easy and flexible tool to study molecular recognition. In: Epton R, ed.Innovation and Perspectives in Solid Phase Synthesis: Peptides, Proteins and Nucleic Acids. Birmingham, UK: Mayflower Worldwide; 1994:509–512.

    Google Scholar 

  22. Eichler J, Houghten RA. Identification of substrate-analog trypsin inhibitors through the screening of synthetic peptide combinatorial libraries.Biochemistry. 1993;32:11035–11041.

    Article  CAS  PubMed  Google Scholar 

  23. Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis.Science. 1991;251:767–773.

    Article  CAS  PubMed  Google Scholar 

  24. Furka A, Sebestyen F, Asgedom M, Dibo G. General method for rapid synthesis of multicomponent peptide mixtures.Int J Pept Protein Res. 1991;37:487–493.

    Article  CAS  PubMed  Google Scholar 

  25. Ostresh JM, Winkle JH, Hamashin VT, Houghten RA. Peptide libraries: determination of relative reaction rates of protected amino acids in competitive couplings.Biopolymers. 1994;34:1681–1689.

    Article  CAS  PubMed  Google Scholar 

  26. Ostresh JM, Schoner CC, Hamashin VT, Nefzi A, Meyer J-P, Houghten RA. Solid phase synthesis of trisubstituted bicyclic guanidines via cyclization of reduced N-acylated dipeptides.J Org Chem. 1998;63:8622–8623.

    Article  CAS  Google Scholar 

  27. Nefzi A, Ostresh JM, Houghten RA. Solid phase synthesis of 1, 3, 4, 7-tetrasubstituted perhydro-1,4-diazepine-2,5-diones.Tetrahedron Lett. 1997;38:4943–4946.

    Article  CAS  Google Scholar 

  28. Nefzi A, Ostresh JM, Meyer J-P, Houghten RA. Solid phase synthesis of heterocyclic compounds from linear peptides: cyclic ureas and thioureas.Tetrahedron Lett. 1997;38:931–934.

    Article  CAS  Google Scholar 

  29. Nefzi A, Dooley CT, Ostresh JM, Houghten RA. Combinatorial chemistry: from peptides and peptidomimetics to small organic and heterocyclic compounds.Bioorg Med Chem Lett. 1998;8: 2273–2278.

    Article  CAS  PubMed  Google Scholar 

  30. Nefzi A, Giulianotti M, Houghten RA. Solid phase synthesis of 2, 4, 5-trisubstituted thiomorpholin-3-ones.Tetrahedron Lett. 1998;39:3671–3674.

    Article  CAS  Google Scholar 

  31. Ostresh JM, Husar GM, Blondelle SE, Dörner B, Weber PA, Houghten RA. “Libraries from libraries”: chemical transformation of combinatorial libraries to extend the range and repertoire of chemical diversity.Proc Natl Acad Sci USA. 1994;91:11138–11142.

    Article  PubMed  Google Scholar 

  32. Cuervo JH, Weitl F, Ostresh JM, Hamashin VT, Hannah AL, Houghten RA. Polyalkylamine chemical combinatorial libraries. In: Maia HLS, ed.Peptides 94: Proceedings of the 23rd European Peptide Symposium. Leiden, The Netherlands: ESCOM; 1995:465–466.

    Google Scholar 

  33. Pinilla C, Appel JR, Blanc P, Houghten RA. Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries.Biotechniques. 1992;13:901–905.

    CAS  PubMed  Google Scholar 

  34. Dooley CT, Houghten RA. The use of positional scanning synthetic combinatorial libraries for the rapid determination of opioid receptor ligands.Life Sci. 1993;52:1509–1517.

    Article  CAS  PubMed  Google Scholar 

  35. Konings DAM, Wyatt JR, Ecker DJ, Freier SM. Deconvolution of combinatorial libraries for drug discovery: theoretical comparison of pooling strategies.J Med Chem. 1996;39:2710–2719.

    Article  CAS  PubMed  Google Scholar 

  36. Wilson-Lingardo L, Davis PW, Ecker DJ, et al. Deconvolution of combinatorial libraries for drug discovery: experimental comparison of pooling strategies.J Med Chem. 1996;39:2720–2726.

    Article  CAS  PubMed  Google Scholar 

  37. Dooley CT, Houghten RA. A comparison of combinatorial library approaches for the study of opioid compounds.Perspect Drug Disc Design. 1995;2:287–304.

    Article  CAS  Google Scholar 

  38. McLafferty MA, Kent RB, Ladner RC, Markland W. M13 bacteriophage displaying disulfide-constrained microproteins.Gene. 1993;128:29–36.

    Article  CAS  PubMed  Google Scholar 

  39. Kassarjian A, Schellenberger V, Turck CW. Screening of synthetic peptide libraries with radiolabeled acceptor molecules.Pept Res. 1993:6:129–133.

    CAS  PubMed  Google Scholar 

  40. Salmon SE, Lam KS, Lebl M, et al. Discovery of biologically active peptides in random libraries: solution-phase testing after staged orthogonal release from resin beads.Proc Natl Acad Sci USA. 1993;90:11708–11712.

    Article  CAS  PubMed  Google Scholar 

  41. Houghten RA, Dooley CT. The use of synthetic peptide combinatorial libraries for the determination of peptide ligands in radioreceptor assays: opioid peptides.Bioorg Med Chem Lett. 1993;3:405–412.

    Article  CAS  Google Scholar 

  42. Dooley CT, Chung NN, Schiller PW, Houghten RA. Acetalins: opioid receptor antagonists determined through the use of synthetic peptide combinatorial libraries.Proc Natl Acad Sci USA. 1993;90:10811–10815.

    Article  CAS  PubMed  Google Scholar 

  43. Dooley CT, Hope S, Houghten RA. Rapid identification of novel opioid peptides from an N-acetylated synthetic combinatorial library.Regul Pept. 1994;54:87–88.

    Article  CAS  Google Scholar 

  44. Dooley CT, Kaplan RA, Chung NN, Schiller PW, Bidlack JM, Houghten RA. Six highly active mu-selective opioid peptides identified from two synthetic combinatorial libraries.Pepts Res. 1995;8:124–137.

    CAS  Google Scholar 

  45. Dooley CT, Hope SK, Houghten RA. Identification of tetrameric opioid peptides from a combinatorial library of L-,D- and nonproteinogenic amino acids. In: Maia HLS, ed.Peptides 94: Proceedings of the 23rd European Peptide Symposium. Leiden, The Netherlands: ESCOM; 1995:805–806.

    Google Scholar 

  46. Dooley CT, Ny P, Bidlack JM, Houghten RAJ. Selective ligands for the mu, delta, and kappa opioid receptors from a single mixture-based tetrapeptide positional scanning combinatorial library.Biol Chem. 1998;273:18848–18856.

    Article  CAS  Google Scholar 

  47. Pinilla C, Appel JR, Blondelle SE et al. Versatility of positional scanning synthetic combinatorial libraries for the identification of individual compounds.Drug Dev Res. 1994;33:133–145.

    Article  CAS  Google Scholar 

  48. Dooley CT, Houghten RA. Orphanin FQ: receptor binding and analog structure activity relationships in rat brain.Life Sci. 1996;59:PL23-PL29.

    Article  CAS  PubMed  Google Scholar 

  49. Dooley CT, Chung NN, Wilkes BC, et al. An all D-amino acid opioid peptide with central analgesic activity from a combinatorial library.Science. 1994;266:2019–2022.

    Article  CAS  PubMed  Google Scholar 

  50. Houghten RA, Dooley CT, Appel JR. De novo identification of highly active fluorescent kappa opioid ligands from a rhodamine labeled tetrapeptide positional scanning library.Bioorg Med Chem Lett. 2004;14:1947–1951.

    Article  CAS  PubMed  Google Scholar 

  51. Zuckermann RN, Martin EJ, Spellmeyer DC, et al. Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library.J Med Chem. 1994;37:2678–2685.

    Article  CAS  PubMed  Google Scholar 

  52. Burgess K, Li W, Linthicum DS, et al. Libraries of opiate and anti-opiate peptidomimetics containing 2,3 methanoleucine.Bioorg Med Chem 1997;5:1867–1871.

    Article  CAS  PubMed  Google Scholar 

  53. Dorner B, Ostresh JM, Blondelle SE, Dooley CT, Houghten RA. Peptidomimetic synthetic combinatorial libraries.Adv Amino Acid Mimetics Peptidomimetics. 1997;1:109–125.

    CAS  Google Scholar 

  54. Dooley CT, Houghten RA. Identification of mu-selective polyamine antagonists from a synthetic combinatorial library.Analgesia. 1995;1:400–404.

    CAS  Google Scholar 

  55. Griffith MC, Dooley CT, Houghten RA, Kiely JS. Solid-phase synthesis, characterization, and screening of a 43,000 compound tetrahydroisoquinoline combinatorial library. In: Chaiken IM, Janda KD, eds.Molecular Diversity and Combinatorial Chemistry: Libraries and Drug Discovery. Washington, DC: American Chemical Society; 1996:50–57.

    Google Scholar 

  56. Thomas JB, Fall MJ, Cooper JB, et al. Identification of an opioid kappa receptor subtype-selective N-substituent for (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine.J Med Chem. 1998;41:5188–5197.

    Article  CAS  PubMed  Google Scholar 

  57. Meunier JC, Mollereau C, Toll L, et al. Isolation and structure of the endogenous agonist of the opioid receptor-like ORL 1 receptor.Nature 1995;377:532–535.

    Article  CAS  PubMed  Google Scholar 

  58. Reinscheid RK, Nothacker HP, Bourson A, et al. Orphanin FQ: a neuropeptide that activates opioidlike G protein-coupled receptor.Science. 1995;270:792–794.

    Article  CAS  PubMed  Google Scholar 

  59. Dooley CT, Spaeth CG, Berzetei-Gurske IP, et al. Binding and in vitro activities of peptides with high affinity for the nociceptin/ orphanin FQ receptor, ORL1.J Pharmacol Exp Ther. 1997;283:735–741.

    CAS  PubMed  Google Scholar 

  60. Schiller PW, Nguyen TM, Berezowska I, et al. Synthesis and in vitro opioid activity profiles of DALDA analogues.Eur J Med Chem. 2000;35:895–901.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao GM, Qian X, Schiller PW, Szeto HH. Comparison of [Dmt1] DALDA and DAMGO in binding and G protein activation at mu, delta, and kappa opioid receptors.J Pharmacol Exp Ther. 2003;307:947–954.

    Article  CAS  PubMed  Google Scholar 

  62. Shimoyama M, Shimoyama N, Zhao GM, Schiller PW, Szeto HH. Antinociceptive and respiratory effects of intrathecal H-Tyr-D-Arg-Phe-Lys-NH2 (DALDA) and [Dmt1] DALDA.J Pharmacol Exp Ther. 2001;297:364–371.

    CAS  PubMed  Google Scholar 

  63. Zadina JE, Hackler L, Ge L-J, Kastin AJ. A potent and selective endogenous agonist for the muopiate receptor.Nature. 1997;386:499–502.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Houghten.

Additional information

Published: May 26, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houghten, R.A., Dooley, C.T. & Appel, J.R. In vitro and direct in vivo testing of mixture-based combinatorial libraries for the identification of highly active and specific opiate ligands. AAPS J 8, 42 (2006). https://doi.org/10.1007/BF02854908

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02854908

Keywords

Navigation