Skip to main content
Log in

Cerebral GABA-ergic and glutamatergic function in hepatic encephalopathy

  • Published:
Neurochemical Pathology

Abstract

Measurement of amino acids in brain tissue obtained at autopsy from cirrhotic patients dying in hepatic coma revealed a threefold increase in glutamine and a concomitant decrease in brain glutamate. The GABA levels were found to be unaltered. Studies using an animal model of portal-systemic encephalopathy gave similar results. Glutamic acid decarboxylase (GAD) activities were within normal limits, both in the brains of cirrhotic patients and portocaval-shunted rats. A previous study reported normal [3H]GABA binding to synaptic membrane preparations from cerebral cortex in these animals. Taken together, these findings suggest that cerebral GABA function is not impaired in hepatic encephalopathy associated with chronic liver disease and portal-systemic shunting. On the other hand, there is evidence to suggest that the releasable pool ofglutamate may be depleted in brain in hepatic encephalopathy. Data consistent with this hypothesis include: (i) Reduction in the evoked release of endogenous glutamate by superfusion of hippocampal slices with pathophysiological levels of ammonia; (ii) ammonia-induced reduction of glutamatergic neurotransmission; and (iii) an increase in the number of [3H]glutamate binding sites in synaptic membrane preparations from hyperammonemia rats and from rats with portocaval shunts. Such neurochemical changes may be of pathophysiological significance in hepatic encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford H. F. and Ward H. K. (1976) On glutaminase activity in mammalian synaptosomes.Brain Res. 110, 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth R. F. (1985) Double-isotope dansyl microassay for cerebral amino acids inNeuromethods (Boulton A. A., Baker G. B., and Wood J. D., eds.) vol. 3, pp. 81–95, Humana, Clifton, NJ.

    Google Scholar 

  • Butterworth R. F. and Giguère J. F. (1984) Region-selective glutamine changes in the CNS in relation to function in experimental subacute hepatic encephalopathy, inAdvances in Hepatic Encephalopathy and Urea Cycle Diseases (Kleinberger G., Ferenci P., Riederer P., and Thaler H., eds.) pp. 394–401, Karger, Basel, Switzerland.

    Google Scholar 

  • Butterworth R. F. and Giguère J. F. (1986) Cerebral amino acids in portal-systemic encephalopathy: Lack of evidence for altered γ-aminobutyric acid (GABA) function.Metab. Brain Dis. 1, 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth R. F., Giguère J. F., Samii A. and Bergeron M. (1986) Regional glutamate changes in experimental hepatic encephalopathy.Trans. Am. Soc. Neurochem. 17, 242.

    Google Scholar 

  • Cooper A. J. L., Ehrlich M. E. and Plum F. (1984) Hepatic encephalopathy: GABA or ammonia?Lancet 1, 158–159.

    Article  Google Scholar 

  • Cremer J. E., Heath D. F., Teal H. M., Woods M. S., and Cavanagh J. B. (1975) Some dynamic aspects of brain metabolism in rats given a portocaval anastomosis.Neuropath. Appl. Neurobiol. 3, 292–311.

    Google Scholar 

  • DeArmond S. J., Fusco M. M., and Dewey M. M. (1976) Structure of the human brain, 2nd Ed., Oxford University, New York, NY.

    Google Scholar 

  • Ferenci P., Pappas S. C., Munson P. J., and Jones E. A. (1984) Changes in glutamate receptors on synaptic membranes associated with hepatic encephalopathy or hyperammonemia in the rabbit.Hepatology 4, 25–29.

    PubMed  CAS  Google Scholar 

  • Fonnum F. (1985) Determination of transmitter amino acid turnover, inNeuromethods, vol. 3 (Boulton A. A., Baker G. B., and Wood J. D., eds.), pp. 201–237 Humana, Clifton, NJ.

    Google Scholar 

  • Foster A. C. and Roberts P. J. (1978) High affinityl-(3H)-glutamate binding to post synaptic sites on rat cerebellar membranes.J. Neurochem. 31, 1467–1477.

    Article  PubMed  CAS  Google Scholar 

  • Giguère J. F. and Butterworth R. F. (1984) Amino acid changes in regions of the CNS in relation to function in experimental portal-systemic encephalopathy.Neurochem. Res. 9, 1309–1321.

    Article  PubMed  Google Scholar 

  • Hamberger A. and Nyström B. (1984) Extra- and intracellular amino acids in the hippocampus during development of hepatic encephalopathy.Neurochem. Res. 9, 1181–1193.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger A., Hedquist B., and Nyström B. (1979) Ammonium ion inhibition of evoked release of endogenous glutamate from hippocampal slices.J. Neurochem. 33, 1295–1302.

    Article  PubMed  CAS  Google Scholar 

  • Hindfelt B., Plum F., and Duffy T. E. (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts.J. Clin. Invest. 59, 386–396.

    PubMed  CAS  Google Scholar 

  • Holmin T. and Siesjö B. J. (1974) The effect of porta-caval anastomosis upon the energy state and upon acid-base parameters of the rat brain.J. Neurochem. 22, 403–412.

    Article  PubMed  CAS  Google Scholar 

  • Iwata H., Yamagami S., and Baba A. (1982) Cysteine sulphinic acid in the central nervous system: Specific binding of35S-cysteic acid to cortical synaptic membranes—an investigation of possible binding sites for cysteine sulfinic acid.J. Neurochem. 38, 1275–1279.

    Article  PubMed  CAS  Google Scholar 

  • Kvamme E. and Lenda K. (1982) Regulation of glutaminase by exogenous glutamate, ammonia and 2-oxoglutarate in synaptosomal enriched preparation from rat brain.Neurochem. Res. 7, 667–678.

    Article  PubMed  CAS  Google Scholar 

  • Mans A. M., Biebuyck J. F., Davis D. W., and Hawkins R. A. (1984) Portacaval anastomosis; brain and plasma metabolite abnormalities and the effect of nutritional therapy.J. Neurochem. 43, 697–705.

    Article  PubMed  CAS  Google Scholar 

  • Norenberg M. D. (1979) The distribution of glutamine synthetase in the rat central nervous system.J. Histochem. Cytochem. 27, 756–762.

    PubMed  CAS  Google Scholar 

  • Plum F. and Hindfelt B. (1976) The neurological complications of liver disease, inHandbook of Clinical Neurology (Vinken P. H. and Bruyn G. W., eds.), vol. 27, pp. 349–377, American Elsevier, New York, NY.

    Google Scholar 

  • Raabe W. A. (1982) Hepatic encephalopathy,Lancet 1, 1020–1021.

    Article  PubMed  CAS  Google Scholar 

  • Record C. O., Buxton B., Chase R. A., Curzon G., Murray-Lyon I. M., and Williams R. (1976) Plasma and brain amino acids in fulminant hepatic failure and their relationship to hepatic encephalopathy.Eur. J. Clin. Invest. 6, 387–394.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson C. and Murphy S. (1982) Glutamate binding in the rat cerebral cortex during ontogeny.Dev. Brain Res. 2, 329–339.

    Article  Google Scholar 

  • Schafer D. F. and Jones E. A. (1982) Hepatic encephalopathy and the γ-aminobutyric acid neurotransmitter system.Lancet 1, 18–20.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, D. F., Fowler J. M., and Jones E. A. (1981) Colonic bacteria: A source of γ-aminobutyric acid in blood.Proc. Soc. Exp. Biol. Med. 167, 301–303.

    PubMed  CAS  Google Scholar 

  • Spokes E. G. S., Garrett N. J., and Iversen L. L. (1979) Differential effects of agonal status on measurements of GABA and glutamate decarboxylase in human post-mortem brain tissue from control and Huntington's Chorea subjects.J. Neurochem. 33, 773–778.

    Article  PubMed  CAS  Google Scholar 

  • Theoret Y. and Bossu J. L. (1985) Effects of ammonium salts on synaptic transmission to hippocampal CA1 and CA3 pyramidal cellsin vivo.Neuroscience 14, 807–821.

    Article  PubMed  CAS  Google Scholar 

  • Theoret Y., Davies M. F., Esplin B., and Capek R. (1985) Effects of ammonium chloride on synaptic transmission in the rat hippocampal slice.Neuroscience 14, 798–806.

    PubMed  CAS  Google Scholar 

  • Tossman U., Eriksson S., Delin A., Hagenfeldt L., Law D., and Ungerstedt U. (1983) Brain amino acids measured by intracerebral dialysis in portacaval shunted rats.J. Neurochem. 41, 1046–1051.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A., Takei N., Higashi T., Shiota T., Nakatsukasa H., Fujiwara M., Sakata T., and Nagashima H. (1984) Glutamic acid and glutamine levels in serum and cerebrospinal fluid in hepatic encephalopathy.Biochem. Med. 32, 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Zanchin G., Maggioni F., Salassa D., and Vassanelli P. (1984) GABA and dopamine receptors after chronic porta-caval shunt in the rat, inAdvances in Hepatic Encephalopathy and Urea Cycle Diseases (Kleinberger G., Ferenci P., Riederer P., and Thaler H., eds.), pp. 360–367, Karger, Basel, Switzerland.

    Google Scholar 

  • Zeneroli M. L., Baraldi M., and Ventura E. (1984) γ-Aminobutyric acid receptors in experimental hepatic encephalopathy, inHepatic Encephalopathy in Chronic Liver Failure (Capocaccia L., Fischer J. E., and Rossi-Fanelli F., eds.), pp. 25–40, Plenum, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butterworth, R.F., Lavoie, J., Giguère, JF. et al. Cerebral GABA-ergic and glutamatergic function in hepatic encephalopathy. Neurochemical Pathology 6, 131–144 (1987). https://doi.org/10.1007/BF02833603

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02833603

Index Entries

Navigation