Skip to main content
Log in

Precipitation and Recrystallization in Some Vanadium and Vanadium-Niobium Microalloyed Steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Static precipitation and recrystallization following hot compression of austenite and the interactions between the two processes have been studied in a set of aluminum-killed HSLA steels containing 0.1 pct carbon, [0.016 - 0.026] pct nitrogen and 0.1 or 0.2 pct vanadium. Two steels containing both vanadium (0.1 and 0.2 pct) and niobium (0.03 pct) were included for purposes of comparison. The compression and the static tests were all carried out isothermally at temperatures between 800 and 900 °C. The course of recrystallization was followed by measurements of the rate of softening and by optical metallography of specimens quenched from the test temperature after different times. Precipitation was studied by measurements of the rate of hardening, by transmission electron microscopy of thin foils, carbon and aluminum extraction replicas, and by X-ray dispersion and energy-loss spectroscopy from individual precipitates.

The temperature of the nose of theC-curve for precipitation in vanadium steels is much lower than that in niobium steels, as is the temperature, TR, below which no recrystallization occurs in short times. Precipitation occurs both at austenite grain boundaries and in the grains (matrix precipitation). The former starts early and the precipitates grow rapidly to an approximately constant size; the matrix precipitates grow more slowly and are responsible for the observed hardening of the austenite. The relevance of various models proposed for the retardation and arrest of recrystallization of austenite are discussed.

In the steels containing vanadium and niobium the precipitates contain both heavy elements: (V,Nb) (C,N). The Nb/V ratio in the matrix precipitates is different than in the parent austenite. The grain-boundary precipitates, however, contain the same Nb/V ratio as the parent austenite. The rate of hardening exhibits a reverseC-curve behavior, being more rapid than in the corresponding vanadium steels at higher temperatures and about the same at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Hot Deformation of Austenite, The Metallurgical Society of AIME, New York, 1977.

  2. Microalloying ’75, Proceedings, Union Carbide Corporation, New York, 1977.

  3. A. LeBon, J. Rofes-Vernis and C. Rossard:Met. Sci. J., 1975, vol. 9, p. 36.

    Article  CAS  Google Scholar 

  4. A. T. Davenport, R. E. Miner and R. A. Kot:The Hot Deformation of Austenite, The Metallurgical Society of AIME, New York, 1977, p. 186.

    Google Scholar 

  5. I. Weiss and J. J. Jonas:Metall. Trans. A., 1977, vol. 10A, p. 831.

    Google Scholar 

  6. I. Weiss and J. J. Jonas:Met. Sci. J., 1979, vol. 13, p. 238.

    Google Scholar 

  7. J. D. Jones and A. B. Rothwell:J. Iron Steel Inst., 1968, vol. 108, p. 78.

    Google Scholar 

  8. S. S. Hansen, J. B. Vander Sande, and Morris Cohen:Metall. Trans. A., 1980, vol. 11A, p. 387.

    CAS  Google Scholar 

  9. E. L. Brown, A. J. DeArdo, and H. H. Bucher:Hot Deforma tion of Austenite, The Metallurgical Society of AIME, New York, 1977, p. 250.

    Google Scholar 

  10. J. N. Cordea and R. E. Hook:Metall. Trans., 1970, vol. 1, p. 111.

    CAS  Google Scholar 

  11. M. J. White and W. S. Owen:Metall. Trans. A., 1980, vol. 11A, p. 597–604.

    CAS  Google Scholar 

  12. L. J. Cuddy, J. J. Bauwin, and J. C. Raley:Metall. Trans. A., 1980, vol. 11A, p. 381–86.

    CAS  Google Scholar 

  13. J. H. Woodhead:Vanadium in High Strength Steel, Vanitec, London, 1979, p. 1.

    Google Scholar 

  14. K. Bunghardt, K. Kind, and W. Olsen:Archiv. Eisenhüettenwes., 1956, vol. 27, p. 61.

    Google Scholar 

  15. M. G. Frohberg and H. Graf:Stahl Eisen, 1960, vol. 80, p. 539.

    Google Scholar 

  16. T. M. Hoogendoorn and M. J. Spanraft:Microalloying ’75, Proceedings, Union Carbide Corporation, New York, 1977, p. 75.

    Google Scholar 

  17. H. F. Pronk:7th Materials Research Symposium, NBS, Washington, D.C., 1974.

    Google Scholar 

  18. K. J. Irvine, F. B. Pickering, and T. Gladman:J. Iron Steel Inst., 1967, vol. 205, p. 161.

    CAS  Google Scholar 

  19. G. Gauthier and A. B. LeBon:Microalloying ’75, Proceedings, Union Carbide Corporation, New York, 1977, p. 88.

    Google Scholar 

  20. A. J. Garratt-Reed: “Quantitative Analysis with High Spatial Resolution,” The Metals Society, London, 1982. (To be published.)

    Google Scholar 

  21. J. B. Vander Sande and A. J. Garratt-Reed: 37th Annual Proc. EMSA, 1980, p. 102.

  22. J. I. Goldstein :Introduction to Analytical Electron Microscopy, J. J. Hren, J. I. Goldstein, and D. C. Joy, eds., Plenum Press, 1979, p. 83.

  23. N. J. Zaluzec: Ibid., 1979, p. 121.

  24. D. C. Joy: Ibid., 1979, p. 223.

  25. D. M. Maher: Ibid., 1979, p. 259.

  26. J. I. Goldstein, J. L. Costley, G. W. Lorrimer, and S. J. B. Reed:SEM/1977, vol. 1, O. Johari, ed., IITRI, Chicago, 1977, p. 315.

    Google Scholar 

  27. G. Cliff and G. W. Lorrimer:J. Microsc, 1975, vol. 103, p. 203.

    Google Scholar 

  28. P. Rez: Kevex Corp., California, Private Communication, 1980.

  29. R. A. P. Djaic and J. J. Jonas:J. Iron Steel Inst., 1972, vol. 219, p. 256.

    Google Scholar 

  30. J. J. Jonas:Proc. 4th Int. Conf. on Strength of Metals and Alloys, Laboratoire du Physique Solide, ed., Nancy, France, 1976, vol. 3, p. 976.

    Google Scholar 

  31. H. J. McQueen and J. J. Jonas:Treatise on Materials Science and Engineering, Academic Press Inc., New York, 1975, vol. 6, p. 394.

    Google Scholar 

  32. M. F. Ashby:Oxide Dispersion Strengthening, G. S. Ansell, T. D. Cooper and F. V. Lenel, eds., Gordon and Breach, New York, 1968, p. 143.

    Google Scholar 

  33. M. F. Ashby and R. Ebeling:TMS—AIME, 1966, vol. 236, p. 1396.

    CAS  Google Scholar 

  34. A. LeBon and L. de Saint-Martin:Microalloying ’75, Proceedings, Union Carbide Corporation, New York, 1977, p. 90.

    Google Scholar 

  35. Morris Cohen and W. S. Owen:, p. 2.

    Google Scholar 

  36. Morris Cohen and S. S. Hansen:MICON ’78, ASTM, STP 672, p. 34.

  37. C. Zener: reported by C. S. Smith,Trans. AIME, 1948, vol. 175, p. 15.

    Google Scholar 

  38. J. W. Cahn:Acta Metall., 1962, vol. 10, p. 789.

    Article  CAS  Google Scholar 

  39. M. Hillert :Inst. Metals Monograph No. 33, 1969, p. 231.

  40. M. Hillert and B. Sundman:Acta Metall., 1976, vol. 24, p. 731.

    Article  CAS  Google Scholar 

  41. W. Roberts:Swedish Institute of Metals Research Report No. IM-1211, Stockholm, 1977.

  42. T. Gladman:Proc. R. Soc, 1966, vol. 294A, p. 298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Associate at MIT

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crooks, M.J., Garratt-Reed, A.J., Sande, J.B.V. et al. Precipitation and Recrystallization in Some Vanadium and Vanadium-Niobium Microalloyed Steels. Metall Trans A 12, 1999–2013 (1981). https://doi.org/10.1007/BF02644169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644169

Keywords

Navigation