Skip to main content
Log in

Extracellular matrix degradation by metalloproteinases and central nervous system diseases

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are a gene family of neutral proteases involved in normal and pathological processes in the central nervous system (CNS). Normally released into the extracellular space, MMPs break down the extracellular matrix (ECM) to allow cell growth and to facilitate remodeling. Proteolysis becomes pathological when the normal balance between the proteases and their inhibitors, tissue inhibitors to metalloproteinases (TIMPs), is lost. Cancer cells secrete neutral proteases to facilitate spread through the ECM. MMPs increase capillary permeability, and they have been implicated in demyelination. Neurological diseases, such as brain tumors, multiple sclerosis, Guillain-Barré, ischemia, Alzheimer's disease, and infections, lead to an increase in the matrix-degrading proteases. Two classes of neutral proteases have been extensively studied, namely the MMPs and the plasminogen activators (PAs), which act in concert to attack the ECM. After proteolytic injury occurs, the process of ECM remodeling begins, which can lead to fibrosis of blood vessels and gliosis. TIMPs are increased after the acute injury and may add to the fibrotic buildup of ECM components. Thus, an inbalance in proteolytic activity either during the acute injury or in recovery may aggravate the underlying disease process. Agents that affect the proteolytic process at any of the regulating sites are potentially useful in therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe T., Mori T., Kohno K., Seiki M., Hayakawa, T., Welgus H. G., et al. (1994) Expression of 72 kDa type IV collagenase and invasion activity of human glioma cells.Clin. Exp. Metastasis 12, 296–304.

    PubMed  CAS  Google Scholar 

  • Agarwall C., Hembree J. R., Rorke E. A., and Eckert R. L. (1994) Transforming growth factor β1 regulation of metalloproteinase production in cultured human cervical epithelial cells.Cancer res. 54, 943–949.

    Google Scholar 

  • Anthony D. C., Ferguson B., Matyzak M. K., Miller K. M., Esiri M. M., and Perry V. H. (1997) Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke.Neuropathol. Appl. Neurobiol. 23, 406–415.

    PubMed  CAS  Google Scholar 

  • Armao D., Kornfeld M., Estrada E. Y., Grossetete M., and Rosenberg G. A. (1997) Neutral proteases and disruption of the blood-brain barrier in rat.Brain Res. 767, 259–264.

    PubMed  CAS  Google Scholar 

  • Backstrom J. R., Miller C. A., and Tokes Z. A. (1992) Characterisation of neutral proteinases from Alzheimer-affected and control brain specimen: identification of calcium-dependent metalloproteinases from the hippocampus.J. Neurochem. 58, 983–992.

    PubMed  CAS  Google Scholar 

  • Barger S. W. and Harmon A. D. (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein.Nature 388, 878–882.

    PubMed  CAS  Google Scholar 

  • Belayev L., Busto R., Zhao W., and Ginsberg M. D. (1996) Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats.Brain Res. 739, 88–96.

    PubMed  CAS  Google Scholar 

  • Benbow U. and Brinckerhoff C. E. (1997) The AP-1 site and MMP gene regulation: What is all the fuss about?Matrix Biol. 15, 519–526.

    PubMed  CAS  Google Scholar 

  • Bernstein J. J. and Karp S. M. (1996) Migrating fetal astrocytes do not intravasate since they are excluded from blood vessels by vital basement membrane.Int. J. Dev. Neurosci. 14, 177–180.

    PubMed  CAS  Google Scholar 

  • Bignami A., Leblanc A., and Perides G. (1994) A role for extracellular matrix degradation in senile dementia?Acta Neuropathol. 87, 308–312.

    PubMed  CAS  Google Scholar 

  • Birkedal-Hansen H. (1993) Role of cytokines and inflammatory mediators in tissue destruction.J. Periodont. Res. 28, 500–510.

    PubMed  CAS  Google Scholar 

  • Black P. M., Carroll R., Glowacka D., Riley, K., and Dashner K. (1994) Platelet-derived growth factor expression and stimulation in human meningiomas.J. Neurosurg. 81, 388–393.

    PubMed  CAS  Google Scholar 

  • Brenner D. A., O'Hara M., Angel P., Chojkier M., and Karin M. (1989) Prolonged activation of jun and collagenase genes by tumour necrosis factoralpha.Nature 337, 661–663.

    PubMed  CAS  Google Scholar 

  • Brooks P. C., Montgomery A. M. P., Rosenfeld M., Reisfeld R. A., Hu T., Klier G., et al. (1994) Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels.Cell 79, 1157–1164.

    PubMed  CAS  Google Scholar 

  • Brooks P. C., Stroemblad S., Klemke R., Visscher D., Sarkar F. H., and Cheresh D. A. (1995) Anti-Integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin.J. Clin. Invest. 96, 1815–1822.

    PubMed  CAS  Google Scholar 

  • Brooks P. C., Stroemblad S., Sanders L. C., von Schalscha T. L., Aimes R. T., Stetler-Stevenson W. G., et al. (1996) Localization of matrix metallo-proteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3.Cell 85, 683–693.

    PubMed  CAS  Google Scholar 

  • Brosnan C. F., Cammer W., Norton W. T., and Bloom B. R. (1980) Proteinase inhibitors suppress the development of experimental allergic encephalomyelitis.Nature 285, 235–237.

    PubMed  CAS  Google Scholar 

  • Cammer W., Bloom B. R., Norton W. T., and Gordon S. (1978) Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: a possible mechanism of inflammatory demyelinisation.Proc. Natl. Acad. Sci. USA 75, 1554–1558.

    PubMed  CAS  Google Scholar 

  • Chicoine M. R., Madsen C. L., and Silbergeld D. L. (1995) Modification of human glioma locomotion in vitro by cytokines EGF, bFGF, PDGFbb, NGF, and TNFα.Neurosurgery 36, 1165–1171.

    PubMed  CAS  Google Scholar 

  • Chintala S. K., Gokaslan Z. L., Go Y., Sawaya R., Nicolson G. L., and Rao J. S. (1996) Role of extracellular matrix proteins in regulation of human glioma cell invasion in vitro.Clin. Exp. Metastasis 14, 358–366.

    PubMed  CAS  Google Scholar 

  • Clark A. W., Krekoski C. A., Bou S.-S., Chapman K. R., and Edwards D. R. (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia.Neurosci. Lett. 238, 53–56.

    PubMed  CAS  Google Scholar 

  • Clark E. A. and Brugge J. S. (1995) Integrins and signal transduction pathways: The road takenScience 268, 233–239.

    PubMed  CAS  Google Scholar 

  • Clubb B. H. and Shivers R. R. (1996) Extracellular matrix regulates microfilaments and vinculin organization in C6 glioma cells.Acta Neuropathol. 91, 31–40.

    PubMed  CAS  Google Scholar 

  • Colton C. A., Keri J. E., Chen W. T., and Monsky W. L. (1993) Protease production by cultured microglia: substrate gel analysis and immobilized matrix degradation.J. Neurosci. Res. 35, 297–304.

    PubMed  CAS  Google Scholar 

  • Crawford H. C. and Matrisian L. M. (1996) Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells [Review] [105 refs].Enzyme Protein 49, 20–37.

    PubMed  CAS  Google Scholar 

  • Deb S. and Gottschall P. E. (1996) Increased production of matrix Metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with β-amyloid peptides.J. Neurochem. 66, 1641–1647.

    PubMed  CAS  Google Scholar 

  • Delany A. M. and Brinckerhoff C. E. (1992) Posttranscriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts.J. Cell. Biochems. 50, 400–410.

    CAS  Google Scholar 

  • Del Bigio M. R., Yan H., Buist R., and Peeling, J. (1996) Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates.Stroke 27, 2312–2320.

    PubMed  Google Scholar 

  • Del Maestro R. F., Lopez-Torres M., McDonald W. B., Stroude E. C., and Vaithilingam I. S. (1992) The effect of tumor necrosis factor-α on human malignant glial cells.J. Neurosurg. 76, 652–659.

    PubMed  Google Scholar 

  • Edvardsen K., Chen W., Rucklidge G. J., Walsh F. S., Obrink B., and Bock E. (1993) Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases.Proc. Natl. Acad. Sci. USA 90, 11,463–11,467.

    CAS  Google Scholar 

  • Friedlander D. R., Zagzag D., Shiff B., Cohen H., Allen J. C., Kelly P. J., et al. (1996) Migration of brain tumor cells on extracellular matrix proteinsin vitro correlates with tumor type and grade and involves αv and αv integrins.Cancer Res. 56, 1939–1947.

    PubMed  CAS  Google Scholar 

  • Gately S., Tsanaclis A. M. C., Takano S., Klagsbrun M., and Brem S. (1995) Cells transfected with basic fibroblast growth factor gene fused to a signal sequence are invasive in vitro and in situ in the Brain.Neurosurgery 36, 780–788.

    PubMed  CAS  Google Scholar 

  • Giese A., Loo M. A., Rief M. D., Tran N., and Berens M. E. (1995) Substrates for astrocytoma invasion.Neurosurgery 37, 294–302.

    PubMed  CAS  Google Scholar 

  • Gijbels K., Masure S., Carton H., and Opdenakker G. (1992) Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and othe rinflammatory neurological disorders.J. Neuroimmunol. 41, 29–34.

    PubMed  CAS  Google Scholar 

  • Gijbels K., Proost P., Masure S., Carton H., Billiau A., and Opdenakker G. (1993) Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves nyelin basic protein.J. Neurosci. Res. 36, 432–440.

    PubMed  CAS  Google Scholar 

  • Gijbels K., Galardy R. E., and Steinman, L. (1994) Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases.J. Clin. Invest. 94, 2177–2182.

    PubMed  CAS  Google Scholar 

  • Gladson C. L. (1996) Expression of integrin αVβ3 in small blood vessels in glioblastoma tumors.J. Neuropathol Exp. Neurol. 55, 1143–1149.

    PubMed  CAS  Google Scholar 

  • Gottschall P. E. (1995) Cytokines regulates gelatinase A and B (matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes.J. Neurochem. 64, 1524–1535.

    Google Scholar 

  • Haines D. E., Harkley L., and Al-Mefty, O. (1993) The “subdural” space: a new look at an outdated concept.Neurosurgery 32, 111–120.

    PubMed  CAS  Google Scholar 

  • Hughes P. M., Wells G. M., Clements J. M., Gearing A. J., Redford E. J., Davies M., et al. (1998) Matrix metalloproteinase expression during experimental autoimmune neuritis.Brain 121, 481–494.

    PubMed  Google Scholar 

  • Imren S., Kohn D. B., Shimada H., Blavier L., and De Clerck Y. A. (1996) Overexpression of tissue inhibitor of metalloproteinase-2 by retroviralmediated gene transferin vivo inhibits tumor growth and invasion.Cancer Res. 56, 2891–2895.

    PubMed  CAS  Google Scholar 

  • Jonat C., Rahmsdorf H. J., Park K. K., Cato A. C., Gebel S., Ponta H., et al. (1990) Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone.Cell 62, 1189–1204.

    PubMed  CAS  Google Scholar 

  • Kalaria R. N. (1992) The blood-brain barrier and cerebral microcirculation in Alzheimer disease.Cerebrovasc. Brain Metab. Rev. 4, 226–260.

    PubMed  CAS  Google Scholar 

  • Kawamata H., Kameyama S., Nan L., and Oyasu R. (1993) Effect of epidermal growth factor and transforming growth factor β1 on growth and invasive potentials of newly established rat bladder carcinoma cell lines.Int. J. Cancer 55, 968–973.

    PubMed  CAS  Google Scholar 

  • Kieseier B. C., Clements J. M., Pischel H. B., Wells G. M., Miller K., Gearing A. J., et al. (1998a) Matrix metalloproteinases MMP-9 and MMP-7 are expressed in experimental autoimmune neuritis and the Guillain-Barre syndrome.Ann. Neurol. 43, 427–434.

    PubMed  CAS  Google Scholar 

  • Kieseier B. C., Kiefer R., Clements J. M., Miller K., Wells G. M., Schweitzer T., et al. (1998b) Matrix metalloproteinase-9 and-7 are regulated in experimental autoimmune encephalomyelitis.Brain 121, 159–166.

    PubMed  Google Scholar 

  • Lee S. C., Liu W., Dickson D. W., Brosnan C. F., and Berman J. W. (1997) Cytokine production by human fetal microglia and astrocytes.J. Immunol. 150, 2659–2667.

    Google Scholar 

  • Leibowitz S. and Kennedy L. (1972) Cerebral vascular permeability and cellular infiltration in experimental allergic encephalomyelitis.Immunology 22, 859–869.

    PubMed  CAS  Google Scholar 

  • Leppert D., Waubant E., Galardy R., Bunnett N. W., and Hauser S. L. (1995) T cell gelatinases mediate basement membrane transmigration in vitro.J. Immunol. 154, 4379–4389.

    PubMed  CAS  Google Scholar 

  • Liesi P., Kaakkola S., Dahl D., and Vaheri A. (1984) Laminin is induced in astrocytes of adult brain by injury.EMBO J. 3, 68–686.

    Google Scholar 

  • Lim G. P., Russell M. J., Cullen M. J., and Tokes Z. A. (1997) Matrix metalloproteinases in dog brains exhibiting Alzheimer-like characteristics.J. Neurochem. 68, 1606–1611.

    PubMed  CAS  Google Scholar 

  • Mahesparan R., Tysnes B. B., Edvardsen K., Haugeland H. K., Cabrera I. G., Lund-Johansen M., et al. (1997) Role of high molecular weight extracellular matrix proteins in glioma cell migration.Neuropathol. Appl. Neurobiol. 23, 102–112.

    PubMed  CAS  Google Scholar 

  • Matsuzawa K., Fukuyama K., Hubbard S. L., Dirks P. B., and Rutka J. T. (1996) Transfection of an invasive human astrocytoma cell line with a TIMP-1 cDNA: modulation of astrocytoma invasive potential.J. Neuropathol. Exp. Neurol. 55, 88–96.

    PubMed  CAS  Google Scholar 

  • Mazzieri R., Masiero L., Zanetta L., Monea S., Onisto M., Garbisa S., et al. (1997) Control of type IV collagenase activity by components of the urokinase-plasmin system: a regulatory mechanism with cell-bound reactants.EMBO J. 16, 2319–2332.

    PubMed  CAS  Google Scholar 

  • Miyazaki K., Umenishi F., Funahashi K., Koshikawa N., Yasumitsu H., and Umeda M. (1992) Activation of TIMP-2/progelatinase A complex by stromelysin.Biochem. Biophys. Res. Commun. 185, 852–859.

    PubMed  CAS  Google Scholar 

  • Miyazaki K., Hasegawa M., Funahashi K., and Umeda M. (1993) A metalloproteinase inhibitor domain in Alzheimer amyloid protein precursor.Nature 362, 839–841.

    PubMed  CAS  Google Scholar 

  • Mohanam S., Wang S. W., Rayford A., Yamamoto M., Sawaya R., Nakajima M., et al. (1995) Expression of tissue inhibitors of metalloproteinases: negative regulators of human glioblastoma invasionin vivo.Clin. Exp. Metastasis 13, 57–62.

    PubMed  CAS  Google Scholar 

  • Muir D. (1994) Metalloproteinase-dependent neurite outgrowth within a synthetic extracellular matrix Is induced by nerve growth factor.Exp. Cell Res. 210, 243–252.

    PubMed  CAS  Google Scholar 

  • Muir D., Johnson J., Rojiani M., Inglis B. A., Rojiani A., and Maria B. L. (1996) Assessment of laminin-mediated glioma invasion in vitro and by glioma tumor engrafted within rat spinal cord.J. Neurooncol. 30, 199–211.

    PubMed  CAS  Google Scholar 

  • Muller M., Hubbard S. L., Fukuyama K., Dirks P., Matsuzakawa K., and Rutka J. T. (1995) Characterization of a pineal region malignant rhabdoid tumor towards understanding brain tumor cell invasion.Pediatr. Neurosurg. 22, 204–209.

    PubMed  CAS  Google Scholar 

  • Mun-Bryce S. and Rosenberg G. A. (1998) Gelatinase B modulates selective opening of the blood-brain barrier during inflammation.Am. J. Physiol. 274, R1203-R1211.

    PubMed  CAS  Google Scholar 

  • Nagano N., Sasaki H., Aoyagi M., and Hirakawa K. (1993) Invasion of experimental rat brain tumor: early morphological changes following microinjection of C6 glioma cells.Acta Neuropathol. 86, 117–125.

    PubMed  CAS  Google Scholar 

  • Nagase H. (1997) Activation mechanism of matrix metalloproteinases.Biol. Chem. 378, 151–160.

    PubMed  CAS  Google Scholar 

  • Nakagawa T., Kubota T., Kabuto M., Sato K., Kawano H., Hayakawa T., et al. (1994) Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain tumors.J. Neurosurg. 81, 69–77.

    PubMed  CAS  Google Scholar 

  • Nakano A., Tani E., Miyazaki K., Yamamoto Y., and Furuyama J. (1995a) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas.J. Neurosurg. 83, 298–307.

    PubMed  CAS  Google Scholar 

  • Nakano A., Tani E., Yamamoto Y., Furuyama J., and Miyazuki K. (1995b) Increased expression of gelatinases A and B, matrilysin and TIMP-1 genes in human malignant gliomas.Nippon Rinsho 53, 1816–1821.

    PubMed  CAS  Google Scholar 

  • Okumura Y., Sato H., Seiki M., and Kido H. (1997) Proteolytic activation of the precursor of membrane type 1 matrix metalloproteinase by human plasmin. A possible cell surface activator.FEBS Lett. 402, 181–184.

    PubMed  CAS  Google Scholar 

  • Olson J. J., Reisner A., Klemm J. M., and Bakay R. A. E. (1993) Basic fibroblastic growth factor as a potential meningeal angiogenic factor.Skull Base Surg. 3, 117–122.

    PubMed  CAS  Google Scholar 

  • Paterson P. Y. (1976) Experimental allergic encephalomyelitis: role of fibrin deposition in immunopathogenesis of inflammation.Fed. Proc. 35, 2428–2434.

    PubMed  CAS  Google Scholar 

  • Pedersen P. H., Marienhagen K., Mork S., and Bjerkvig R. (1993) Migratory patterns of fetal rat brain cells and human glioma cells in the adult rat brain.Cancer Res. 53, 5158–5165.

    PubMed  CAS  Google Scholar 

  • Pedersen P. H., Edvardsen K., Garcia-Cabrera I., Mahesparan R., Thorsen J., Mathisen B., et al. (1995) Migratory patterns of lac-z transfected human glioma cells in the rat brain.Int. J. Cancer 62, 767–771.

    PubMed  CAS  Google Scholar 

  • Peress N., Perillo E., and Zucker S. (1995) Localization of tissue inhibitor of matrix metalloproteinases in Alzheimer's disease and normal brain.J. Neuropathol. Exp. Neurol. 54, 16–22.

    PubMed  CAS  Google Scholar 

  • Perris R. (1997) The extracellular matrix in neural crest-cell migration.Trends Neurosci. 20, 23–31.

    PubMed  CAS  Google Scholar 

  • Pijuan-Thompson V. and Gladson C. L. (1997) Ligation of integrin α5β1 is required for internalization of vitronectin by integrin αvβ3.J. Biol. Chem. 272, 2736–2743.

    PubMed  CAS  Google Scholar 

  • Powell W. C. and Matrisian L. M. (1996) Complex roles of matrix metalloproteinases in tumor progression.Curr. Top. Microbiol. Immunol. 213(PE1), 1–21.

    PubMed  CAS  Google Scholar 

  • Previtali S., Quattrini A., Nemni R., Truci G., Ducati A., Wrabetz L., et al. (1996) α6β4 and α6β1 integrins in astrocytomas and other CNS tumors.J. Neuropathol Exp. Neurol. 55, 456–465.

    PubMed  CAS  Google Scholar 

  • Redekop G. J. and Naus, C. C. G. (1995) Transfection with bFGF sense and antisense cDNA resulting in modification of malignant glioma growth.J. Neurosurg. 82, 83–90.

    PubMed  CAS  Google Scholar 

  • Redford E. J., Smith K. J., Gregson N. A., Davies M., Hughes P., Gearing A. J., et al. (1997) A combined inhibitor of matrix metalloproteinase activity and tumour necrosis factor-alpha processing attenuates experimental autoimmune neuritis.Brain 120, 1895–1905.

    PubMed  Google Scholar 

  • Romanic A. M. and Madri J. A. (1994) Extracellular matrix-degrading proteinases in the nervous system.Brain Pathol. 4, 145–156.

    PubMed  CAS  Google Scholar 

  • Rosenberg G. A. (1995) Matrix metalloproteinases in brain injury.J. Neurotrauma 12, 151–155.

    Google Scholar 

  • Rosenberg G. A. and Navratil M. (1997) Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat.Neurology 48, 921–926.

    PubMed  CAS  Google Scholar 

  • Rosenberg G. A., Mun-Bryce S., Wesley M., and Kornfeld M. (1990) Collagenase-induced intracerebral hemorrhage in rats.Stroke 21, 801–807.

    PubMed  CAS  Google Scholar 

  • Rosenberg G. A., Kornfeld M., Estrada E., Kelley R. O., Liotta L. A., and Stetler-Stevenson, W. G. (1992) TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase.Brain Res. 576, 203–207.

    PubMed  CAS  Google Scholar 

  • Rosenberg G. A., Estrada E. Y., Dencoff J. E., and Stetler-Stevenson W. G. (1995) Tumor necrosis factor-alpha-induced gelatinase-B causes delayed opening of the blood-brain barrier. An expanded therapeutic window.Brain Res. 703, 151–155.

    PubMed  CAS  Google Scholar 

  • Rosenberg G. A., Dencoff J. E., Correa N., Reiners M., and Ford C. C. (1996) Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: Relation to blood-brain barrier injury.Neurology 46, 1626–1632.

    PubMed  CAS  Google Scholar 

  • Rosenberg G. A., Dencoff J. E., and Estrada E. Y. (1998) Matrix metalloproteinases and TIMPs modulate blood-brain barrier opening after reperfusion in rat brain.Stroke,29, 2189–2195.

    PubMed  CAS  Google Scholar 

  • Ruoslahti E. (1997) Stretching is good for a cell.Science 276, 1345,1346.

    PubMed  CAS  Google Scholar 

  • Rutka J. T., Apodaca G., Stern R., and Rosenblum M. L. (1988) The extracellular matrix of the central and peripheral nervous system: structure and function.J. Neurosurg. 69, 155–170.

    PubMed  CAS  Google Scholar 

  • Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., et al. (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells.Nature 370, 61–65.

    PubMed  CAS  Google Scholar 

  • Sato H., Kinoshita T., Takino T., Nakayama K., and Seiki M. (1996) Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2.FEBS Lett. 393, 101–104.

    PubMed  CAS  Google Scholar 

  • Sawada M., Kondo N., Suzumura A., and Marunouchi T. (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture.Brain Res. 491, 394–397.

    PubMed  CAS  Google Scholar 

  • Sawaya R., Tofilon P. J., Mohanam S., Ali-Osman F., Liotta L. A., Stetler-Stevenson W. G., et al. (1994) Induction of tissue-type plasminogen activator and 72-kDa type IV collagenase by ionizing radiation in rat astrocytes.Int. J. Cancer 56, 214–218.

    PubMed  CAS  Google Scholar 

  • Schnaper H. W., Grant D. S., Stetler-Stevenson W. G., Fridman R., D'Orazi G., Murphy A. N., et al. (1993) Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro.J. Cell. Physiol. 156, 235–246.

    PubMed  CAS  Google Scholar 

  • Seiki M. (1996) Membrane type-matrix metalloproteinase and tumor invasion.Curr. Top. Microbiol. Immunol. 213(Pt 1), 23–32.

    PubMed  CAS  Google Scholar 

  • Strongin Y. A., Marmer B. L., Grant G. A., and Goldberg G. I. (1993) Plasma-membrane dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2.J. Biol. Chem. 268, 14,033–14,039.

    CAS  Google Scholar 

  • Tawil N., Wilson P., and Carbonetto S. (1993) Integrins in point contacts mediate cell spreading: Factors that regulate Integrin accumulation in in point contacts vs focal contacts.J. Cell. Biol. 120, 261–271.

    PubMed  CAS  Google Scholar 

  • Tomasek J. J., Halliday N. L., Updike D. L., Ahern-Moore J. S., Vu T. H., Liu R. W., et al. (1997) Gelatinase A activation is regulated by the organization of the polymerized actin cytoskeleton.J. Biol. Chem. 272, 7482–7487.

    PubMed  CAS  Google Scholar 

  • Turpeenniemi-Hujanen T., Thorgeirsson U. P., Rao C. N., and Liotta L. A. (1986) Laminin increases the release of type IV collagenase from malignant cells.J. Biol. Chem. 261, 1883–1889.

    PubMed  CAS  Google Scholar 

  • Vlodavsky I., Ishai-Michaeli R., Atzmon R., Mohsen M., Levi E., Bar-Shavit R., et al. (1992) Extracellular sequestration and release of fibroblast growth factor: A possible mechanism for indirect angiogenesis, inGrowth Factors of the Vascular and Nervous System. International Symposium on Biotechnology of Growth Factors, Milan, May 1991 (Lenfant C., Paoletti R., and Albertini A., eds.), Karger, Basel, pp. 38–47.

    Google Scholar 

  • Wagner S., Tagaya M., Koziol J. A., Quaranta V., and del Zoppo J. (1997) Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin α6β4 during focal cerebral ischemia/reperfusion.Stroke 28, 858–865.

    PubMed  CAS  Google Scholar 

  • Weiner H. L. (1995) The role of growth factor receptors in central nervous system development and neoplasia.Neurosurgery 37, 179–194.

    PubMed  CAS  Google Scholar 

  • Wells G. M. A., Catlin G., Cossins J. A., Mangan M., Ward G. A., Miller K. M., et al. (1996) Quantitation of matrix metalloproteinases in cultured rat astrocytes using the polymerase chain reaction with a multi-competitor cDNA standard.Glia 18, 332–340.

    PubMed  CAS  Google Scholar 

  • Yamada T., Yoshiyama Y., Sato H., Seiki M., Shingawa A., and Takahashi M. (1995) White matter microglia produce membrane-type matrix metalloproteinase, an activator of gelatinase A, in human brain tissues.Acta Neuropathol. 90, 421–424.

    PubMed  CAS  Google Scholar 

  • Yang G. and Betz A. L. (1994) Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats.Stroke 25, 1658–1665.

    PubMed  CAS  Google Scholar 

  • Yong V. W., Kerkoski C. A., Forsyth P. A., Bell R., and Edwards D. R. (1998) Matrix metalloproteinases and diseases of the CNSs.Trends Neurosci. 21, 75–80.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Lukes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukes, A., Mun-Bryce, S., Lukes, M. et al. Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol Neurobiol 19, 267–284 (1999). https://doi.org/10.1007/BF02821717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02821717

Index Entries

Navigation