Skip to main content

Advertisement

Log in

Metalloproteinases and their inhibitors in neurological disease

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are a group of endopeptidases that degrade the extracellular matrix and are responsible for many physiological and pathological processes. We aim to review the MMP inhibition from a clinical perspective and its possible therapeutic use in the future. MMPs play a role in various neurodegenerative and cerebrovascular diseases such as large artery atherosclerosis and ischemic stroke; for example, MMPs increase blood–brain barrier permeability favoring neuroinflammation. Synthetic MMPs inhibitors have been tested mostly in oncological trials and failed to demonstrate efficacy; some of them were discontinued because of the severe adverse reactions. Tetracyclines, in submicrobial doses, act as an MMP inhibitor, although tetracyclines have not yet been proven effective in several neurological conditions in which they were tested against placebo; it is uncertain whether there may be a use for tetracyclines in cerebrovascular disease, as a neuroprotective agent or in dolichoectasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adair JC, Charlie J, Dencoff JE, Kaye JA, Quinn JF, Camicioli RM, Stetler-Stevenson WG, Rosenberg GA (2004) Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients with vascular dementia and Alzheimer disease. Stroke 35:e159–e162

    CAS  PubMed  Google Scholar 

  • Adhikari N, Mukherjee A, Saha A, Jha T (2017) Arylsulfonamides and selectivity of matrix metalloproteinase-2: an overview. Eur J Med Chem 129:72–109

    CAS  PubMed  Google Scholar 

  • Allan JA, Docherty AJ, Barker PJ, Huskisson NS, Reynolds JJ, Murphy G (1995) Binding of gelatinases A and B to type-I collagen and other matrix components. Biochemical Journal 309(Pt 1):299–306

    CAS  PubMed Central  Google Scholar 

  • Amiri-Nikpour MR, Nazarbaghi S, Hamdi-Holasou M, Rezaei Y (2015) An open-label evaluator-blinded clinical study of minocycline neuroprotection in ischemic stroke: gender-dependent effect. Acta Neurol Scand 131:45–50

    CAS  PubMed  Google Scholar 

  • Arslan Y, Arslan İB, Pekçevik Y, Şener U, Köse Ş, Zorlu Y (2016) Matrix metalloproteinase levels in cervical and intracranial carotid dolichoarteriopathies. J Stroke Cerebrovas Dis 25:2153–8

    Google Scholar 

  • Baxter BT, Matsumura J, Curci JA, McBride R, Larson L, Blackwelder W, Lam D, Wijesinha M, Terrin M, N-TA3CT Investigators (2020) Effect of doxycycline on aneurysm growth among patients with small infrarenal abdominal aortic aneurysms: a randomized clinical trial. JAMA 323:2029–2038. https://doi.org/10.1001/jama.2020.5230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter BT, Pearce WH, Waltke EA, Littooy FN, Hallett JW Jr, Kent KC, Upchurch GR Jr, Chaikof EL, Mills JL, Fleckten B, Longo GM, Lee JK, Thompson RW (2002) Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (phase II) multicenter study. J Vasc Surg 36:1–12

    PubMed  Google Scholar 

  • Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S (2021) ‘Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: pathophysiological and therapeutic perspectives’. Int J Mol Sci, 22

  • Bjerke M, Zetterberg H, Edman Å, Blennow K, Wallin A, Andreasson U (2011) Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. J Alzheimers Dis 27:665–676

    CAS  PubMed  Google Scholar 

  • Bonelli RM, Hödl AK, Hofmann P, Kapfhammer HP (2004) Neuroprotection in Huntington’s disease: a 2-year study on minocycline. Int Clin Psychopharmacol 19:337–342

    PubMed  Google Scholar 

  • Cankaya S, Cankaya B, Kilic U, Kilic E, Yulug B (2019) The therapeutic role of minocycline in Parkinson’s disease. Drugs Context 8:212553

    PubMed  PubMed Central  Google Scholar 

  • Castro MM, Kandasamy AD, Youssef N, Schulz R (2011) Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res 64:551–560

    CAS  PubMed  Google Scholar 

  • Cheng J, Liu HP, Lee CC, Chen MY, Lin WY, Tsai FJ (2018) Matrix metalloproteinase 14 modulates diabetes and Alzheimer’s disease cross-talk: a meta-analysis. Neurol Sci 39:267–274

    PubMed  Google Scholar 

  • Choi DH, Kim EM, Son HJ, Joh TH, Kim YS, Kim D, Flint Beal M, Hwang O (2008) A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J Neurochem 106:405–415

    CAS  PubMed  Google Scholar 

  • Fanjul-Fernández M, Folgueras AR, Cabrera S, López-Otín C (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochem Biophys Acta 1803:3–19

    PubMed  Google Scholar 

  • Forloni G, Colombo L, Girola L, Tagliavini F, Salmona M (2001) Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett 487:404–407

    CAS  PubMed  Google Scholar 

  • Frenzel T, Lee CZ, Kim H, Quinnine NJ, Hashimoto T, Lawton MT, Guglielmo BJ, McCulloch CE, Young WL (2008) Feasibility of minocycline and doxycycline use as potential vasculostatic therapy for brain vascular malformations: pilot study of adverse events and tolerance. Cerebrovasc Dis 25:157–163

    CAS  PubMed  Google Scholar 

  • Gijbels K, Masure S, Carton H, Opdenakker G (1992) Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J Neuroimmunol 41:29–34

    CAS  PubMed  Google Scholar 

  • Griffin MO, Fricovsky E, Ceballos G, Villarreal F (2010) ‘Tetracyclines: a pleitropic family of compounds with promising therapeutic properties Review of the Literature.’ Am J Physiol Cell Physiol 299:C539–C548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez J, Menshawy K, Goldman J, Dwork AJ, Elkind MS, Marshall RS, Morgello S (2016) Metalloproteinases and brain arterial remodeling among individuals with and those without HIV infection. J Infect Dis 214:1329–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez J, Sacco RL, Wright CB (2011) Dolichoectasia-an evolving arterial disease. Nat Rev Neurol 7:41–50

    PubMed  Google Scholar 

  • Hackmann AE, Rubin BG, Sanchez LA, Geraghty PA, Thompson RW, Curci JA (2008) A randomized, placebo-controlled trial of doxycycline after endoluminal aneurysm repair. J Vasc Surg 48:519–26 (discussion 26)

    PubMed  PubMed Central  Google Scholar 

  • Haïk S, Marcon G, Mallet A, Tettamanti M, Welaratne A, Giaccone G, Azimi S, Pietrini V, Fabreguettes JR, Imperiale D, Cesaro P, Buffa C, Aucan C, Lucca U, Peckeu L, Suardi S, Tranchant C, Zerr I, Houillier C, Redaelli V, Vespignani H, Campanella A, Sellal F, Krasnianski A, Seilhean D, Heinemann U, Sedel F, Canovi M, Gobbi M, Di Fede G, Laplanche JL, Pocchiari M, Salmona M, Forloni G, Brandel JP, Tagliavini F (2014) Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:150–158

    PubMed  Google Scholar 

  • Hashimoto T, Matsumoto MM, Li JF, Lawton MT, Young WL (2005) Suppression of MMP-9 by doxycycline in brain arteriovenous malformations. BMC Neurol 5:1

    PubMed  PubMed Central  Google Scholar 

  • He T, Wang J, Wang XL, Deng WS, Sun P (2017) Association between the matrix metalloproteinase-9 rs3918242 polymorphism and ischemic stroke susceptibility: a meta-analysis. J Stroke Cerebrovasc Dis 26:1136–1143

    PubMed  Google Scholar 

  • Howard R, Zubko O, Bradley R, Harper E, Pank L, O’Brien J, Fox C, Tabet N, Livingston G, Bentham P, McShane R, Burns A, Ritchie C, Reeves S, Lovestone S, Ballard C, Noble W, Nilforooshan R, Wilcock G, Gray R (2020) Minocycline at 2 different dosages vs placebo for patients with mild alzheimer disease: a randomized clinical trial. JAMA Neurol 77:164–174

    PubMed  Google Scholar 

  • Huang X, Ye Q, Zhang Z, Huang X, Zhu Z, Chen Y, Li J, Chen S, Xia N, Mao X, Han L, Ye Z (2017) Association of matrix metalloproteinase-3 gene 5A/6A polymorphism with the recurrence of ischemic stroke: a prospective observational study. Brain Res 1674:55–61

    CAS  PubMed  Google Scholar 

  • Hunter MD, Shenoy A, Dwork A, Elkind MSV, Marshall R, Mohr JP, Morgello S, Gutierrez J (2018) Brain vascular intima vulnerability among HIV-positive and negative individuals. AIDS 32:2209–2216

    PubMed  Google Scholar 

  • Investigators, The Huntington Study Group DOMINO (2010) A futility study of minocycline in Huntington’s disease. Mov Disord 25:2219–2224

    Google Scholar 

  • Jabłońska-Trypuć A, Matejczyk M, Rosochacki S (2016) Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 31:177–183

    PubMed  Google Scholar 

  • Jiang Y, Liu H, Wang Y, Shi X, Shao Y, Xu Z (2020) Meta-analysis of matrix metalloproteinase (MMP)-9 C1562T polymorphism and susceptibility to ischemic stroke in the Chinese population. J Int Med Res 48:300060520926427

    CAS  PubMed  Google Scholar 

  • Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden J, Blacker D (2013) Intravenous minocycline in acute stroke. Stroke 44:2493–2499

    CAS  PubMed  Google Scholar 

  • Lampl Y, Boaz M, Gilad R, Lorberboym M, Dabby R, Rapoport A, Anca-Hershkowitz M, Sadeh M (2007) Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69:1404–1410

    CAS  PubMed  Google Scholar 

  • Lau LW, Cua R, Keough MB, Haylock-Jacobs S, Yong VW (2013) Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci 14:722–729

    CAS  PubMed  Google Scholar 

  • Lech AM, Wiera G, Mozrzymas JW (2019) Matrix metalloproteinase-3 in brain physiology and neurodegeneration. Adv Clin Exp Med 28:1717–1722

    PubMed  Google Scholar 

  • Lindeman JH, Abdul-Hussien H, van Bockel JH, Wolterbeek R, Kleemann R (2009) Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm: doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation 119:2209–2216

    CAS  PubMed  Google Scholar 

  • Loeb MB, Molloy DW, Smieja M, Standish T, Goldsmith CH, Mahony J, Smith S, Borrie M, Decoteau E, Davidson W, McDougall A, Gnarpe J, O’DONNell M, Chernesky M (2004) A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J Am Geriatr Soc 52:381–7

    PubMed  Google Scholar 

  • Lorenzl S, Buerger K, Hampel H, Beal MF (2008) Profiles of matrix metalloproteinases and their inhibitors in plasma of patients with dementia. Int Psychogeriatr 20:67–76

    PubMed  Google Scholar 

  • Macdonald H, Kelly RG, Allen ES, Noble JF, Kanegis LA (1973) Pharmacokinetic studies on minocycline in man. Clin Pharmacol Ther 14:852–861

    CAS  PubMed  Google Scholar 

  • Machado LS, Sazonova IY, Kozak A, Wiley DC, El-Remessy AB, Ergul A, Hess DC, Waller JL, Fagan SC (2009) Minocycline and tissue-type plasminogen activator for stroke. Stroke 40:3028–3033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra K, Chang JJ, Khunger A, Blacker D, Switzer JA, Goyal N, Hernandez AV, Pasupuleti V, Alexandrov AV, Tsivgoulis G (2018) Minocycline for acute stroke treatment: a systematic review and meta-analysis of randomized clinical trials. J Neurol 265:1871–1879

    CAS  PubMed  Google Scholar 

  • Mastroianni CM, Liuzzi GM (2007) Matrix metalloproteinase dysregulation in HIV infection: implications for therapeutic strategies. Trends Mol Med 13:449–459

    CAS  PubMed  Google Scholar 

  • McArthur JC, Steiner J, Sacktor N, Nath A (2010) Human immunodeficiency virus-associated neurocognitive disorders: mind the gap. Ann Neurol 67:699–714

    CAS  PubMed  Google Scholar 

  • Meijer CA, Stijnen T, Wasser MN, Hamming JF, van Bockel JH, Lindeman JH (2013) Doxycycline for stabilization of abdominal aortic aneurysms: a randomized trial. Ann Intern Med 159:815–823

    PubMed  Google Scholar 

  • Metz LM, Li D, Traboulsee A, Myles ML, Duquette P, Godin J, Constantin M, Yong VW (2009) Glatiramer acetate in combination with minocycline in patients with relapsing–remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Mult Scler 15:1183–1194

    CAS  PubMed  Google Scholar 

  • Metz LM, Zhang Y, Yeung M, Patry DG, Bell RB, Stoian CA, Yong VW, Patten SB, Duquette P, Antel JP, Mitchell JR (2004) Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol 55:756

    PubMed  Google Scholar 

  • Mignatti P, Rifkin DB (1996) Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein 49:117–137

    CAS  PubMed  Google Scholar 

  • Miller JP, Holcomb J, Al-Ramahi I, de Haro M, Gafni J, Zhang N, Kim E, Sanhueza M, Torcassi C, Kwak S, Botas J, Hughes RE, Ellerby LM (2010) Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron 67:199–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minagar A, Alexander JS, Schwendimann RN, Kelley RE, Gonzalez-Toledo E, Jimenez JJ, Mauro L, Jy W, Smith SJ (2008) Combination therapy with interferon beta-1a and doxycycline in multiple sclerosis: an open-label trial. Arch Neurol 65:199–204

    PubMed  Google Scholar 

  • Misra S, Talwar P, Kumar A, Kumar P, Sagar R, Vibha D, Pandit AK, Gulati A, Kushwaha S, Prasad K (2018) Association between matrix metalloproteinase family gene polymorphisms and risk of ischemic stroke: a systematic review and meta-analysis of 29 studies. Gene 672:180–194

    CAS  PubMed  Google Scholar 

  • Molloy DW, Standish TI, Zhou Q, Guyatt G (2013) A multicenter, blinded, randomized, factorial controlled trial of doxycycline and rifampin for treatment of Alzheimer’s disease: the DARAD trial. Int J Geriatr Psychiatry 28:463–470

    PubMed  Google Scholar 

  • Myasoedova VA, Chistiakov DA, Grechko AV, Orekhov AN (2018) Matrix metalloproteinases in pro-atherosclerotic arterial remodeling. J Mol Cell Cardiol 123:159–167

    CAS  PubMed  Google Scholar 

  • Nakasujja N, Miyahara S, Evans S, Lee A, Musisi S, Katabira E, Robertson K, Ronald A, Clifford DB, Sacktor N (2013) Randomized trial of minocycline in the treatment of HIV-associated cognitive impairment. Neurology 80:196–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson C, Rice ME (1986) The migration of substances in the neuronal microenvironmenta. Ann N Y Acad Sci 481:55–68

    CAS  PubMed  Google Scholar 

  • Ninds Net-Pd Investigators (2006) A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66:664–671

    Google Scholar 

  • Ninds Net-Pd Investigators (2008) A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol 31:141–150

    Google Scholar 

  • Padma Srivastava MV, Bhasin A, Bhatia R, Garg A, Gaikwad S, Prasad K, Singh MB, Tripathi M (2012) Efficacy of minocycline in acute ischemic stroke: a single-blinded, placebo-controlled trial. Neurol India 60:23–28

    CAS  PubMed  Google Scholar 

  • Paemen L, Martens E, Norga K, Masure S, Roets E, Hoogmartens J, Opdenakker G (1996) The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem Pharmacol 52:105–111

    CAS  PubMed  Google Scholar 

  • Palm F, Pussinen PJ, Safer A, Tervahartiala T, Sorsa T, Urbanek C, Becher H, Grau AJ (2018) Serum matrix metalloproteinase-8, tissue inhibitor of metalloproteinase and myeloperoxidase in ischemic stroke. Atherosclerosis 271:9–14

    CAS  PubMed  Google Scholar 

  • Pico F, Jacob MP, Labreuche J, Soufir N, Touboul PJ, Benessiano J, Cambien F, Grandchamp B, Michel JB, Amarenco P (2010) Matrix metalloproteinase-3 and intracranial arterial dolichoectasia. Ann Neurol 67:508–515

    CAS  PubMed  Google Scholar 

  • Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    CAS  PubMed  Google Scholar 

  • Rosenberg GA (2017) ‘Chapter 61 - Matrix Metalloproteinases and Extracellular Matrix in the Central Nervous System.’ in Louis R. Caplan, José Biller, Megan C. Leary, Eng H. Lo, Ajith J. Thomas, Midori Yenari and John H. Zhang (eds.), Primer on Cerebrovascular Diseases (Second Edition) (Academic Press: San Diego)

  • Rosenberg GA, Dencoff JE, Correa N Jr, Reiners M, Ford CC (1996) Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: relation to blood-brain barrier injury. Neurology 46:1626–1632

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, Sullivan N, Esiri MM (2001) White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke 32:1162–1168

    CAS  PubMed  Google Scholar 

  • Saari H, Suomalainen K, Lindy O, Konttinen YT, Sorsa T (1990) Activation of latent human neutrophil collagenase by reactive oxygen species and serine proteases. Biochem Biophys Res Commun 171:979–987

    CAS  PubMed  Google Scholar 

  • Sacktor N, Miyahara S, Deng L, Evans S, Schifitto G, Cohen BA, Paul R, Robertson K, Jarocki B, Scarsi K, Coombs RW, Zink MC, Nath A, Smith E, Ellis RJ, Singer E, Weihe J, McCarthy S, Hosey L, Clifford DB (2011) Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology 77:1135–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacktor N, Miyahara S, Evans S, Schifitto G, Cohen B, Haughey N, Drewes JL, Graham D, Zink MC, Anderson C, Nath A, Pardo CA, McCarthy S, Hosey L, Clifford D (2014) Impact of minocycline on cerebrospinal fluid markers of oxidative stress, neuronal injury, and inflammation in HIV-seropositive individuals with cognitive impairment. J Neurovirol 20:620–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sood RR, Taheri S, Candelario-Jalil E, Estrada EY, Rosenberg GA (2008) Early beneficial effect of matrix metalloproteinase inhibition on blood-brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain. J Cereb Blood Flow Metab 28:431–438

    CAS  PubMed  Google Scholar 

  • Sørensen PS, Sellebjerg F, Lycke J, Färkkilä M, Créange A, Lund CG, Schluep M, Frederiksen JL, Stenager E, Pfleger C, Garde E, Kinnunen E, Marhardt K (2016) Minocycline added to subcutaneous interferon β-1a in multiple sclerosis: randomized RECYCLINE study. Eur J Neurol 23:861–870

    PubMed  Google Scholar 

  • Stack EC, Smith KM, Ryu H, Cormier K, Chen M, Hagerty SW, Del Signore SJ, Cudkowicz ME, Friedlander RM, Ferrante RJ (2006) Combination therapy using minocycline and coenzyme Q10 in R6/2 transgenic Huntington’s disease mice. Biochem Biophys Acta 1762:373–380

    CAS  PubMed  Google Scholar 

  • Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11:308–322

    CAS  PubMed  Google Scholar 

  • Varges D, Manthey H, Heinemann U, Ponto C, Schmitz M, Schulz-Schaeffer WJ, Krasnianski A, Breithaupt M, Fincke F, Kramer K, Friede T, Zerr I (2017) Doxycycline in early CJD: a double-blinded randomised phase II and observational study. J Neurol Neurosurg Psychiatry 88:119–125

    PubMed  Google Scholar 

  • Wang XX, Tan MS, Yu JT, Tan L (2014) Matrix metalloproteinases and their multiple roles in Alzheimer’s disease. Biomed Res Int 2014:908636

    PubMed  PubMed Central  Google Scholar 

  • Zabad RK, Metz LM, Todoruk TR, Zhang Y, Mitchell JR, Yeung M, Patry DG, Bell RB, Yong VW (2007) The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: a pilot study. Mult Scler 13:517–526

    CAS  PubMed  Google Scholar 

  • Zhang Y, Metz LM, Yong VW, Bell RB, Yeung M, Patry DG, Mitchell JR (2008) Pilot study of minocycline in relapsing-remitting multiple sclerosis. Can J Neurol Sci 35:185–191

    CAS  PubMed  Google Scholar 

  • Zink MC, Uhrlaub J, DeWitt J, Voelker T, Bullock B, Mankowski J, Tarwater P, Clements J, Barber S (2005) Neuroprotective and anti-human immunodeficiency virus activity of minocycline. JAMA 293:2003–2011

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JG conceived and designed this review article and revised the manuscript. ELN collected and extracted data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jose Gutierrez.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors declare consent to publish this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Navarro, E.R., Gutierrez, J. Metalloproteinases and their inhibitors in neurological disease. Naunyn-Schmiedeberg's Arch Pharmacol 395, 27–38 (2022). https://doi.org/10.1007/s00210-021-02188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-021-02188-x

Keywords

Navigation