Skip to main content

Recent Advances in Directed Phytase Evolution and Rational Phytase Engineering

  • Chapter
  • First Online:
Directed Enzyme Evolution: Advances and Applications

Abstract

Phytases are hydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Phytate is the major phosphorous storage compound in cereal gains, oilseeds, and legumes and is indigestible by monogastric animals such as poultry and swine. Supplementation of phytase in animal feed proved to improve animal nutrition and decrease phosphorous pollution. Several phytases were discovered in the last century, and today a highly competitive market situation emerged the demands for phytases that are redesigned to excellently match industrial demands. Phytase engineering by directed evolution and rational design has offered a robust approach to tailor-made phytases with high specific activity, broad thermal and pH profile, and protease resistance. In this chapter, we summarized challenges and successful approaches employed in phytase engineering. Factors influencing phytase thermostability, pH stability, pH optima, and protease resistance have been discussed with respect to structural perspective and potential molecular mechanism for improvement. Importance of cooperative substitutions and a way to identify these interactions are discussed. Recent development in screening technology and molecular insights in combining key beneficial substitutions are detailed. In addition, strategies and approaches for rapid and efficient evolution of phytases and to understand structure function relationships on a molecular level have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9(3):165–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harland BF, Oberleas D (1999) Phytase in animal nutrition and waste management. BASF Ref Man 237–240.

    Google Scholar 

  3. Sebastian S, Touchburn SP, Chavez ER (1998) Implications of phytic acid and supplemental microbial phytase in poultry nutrition: a review. World Peoult Sci J 54(01):27–47

    Article  Google Scholar 

  4. Lei XG, Weaver JD, Mullaney E et al (2013) Phytase, a new life for an “old” enzyme. Ann Rev Anim Biosci 1:283–309

    Article  Google Scholar 

  5. Lei XG, Ku PK, Miller ER et al (1993) Supplementing corn-soybean meal diets with microbial phytase maximizes phytate phosphorus utilization by weanling pigs. J Anim Sci 71(12):3368–3375

    CAS  PubMed  Google Scholar 

  6. Lei XG, Ku PK, Miller ER et al (1994) Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J Anim Sci 72(1):139–143

    CAS  PubMed  Google Scholar 

  7. Lei X, Ku PK, Miller ER et al (1993) Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J Nutr 123(6):1117–1123

    CAS  PubMed  Google Scholar 

  8. Gilbert N (2009) Environment: the disappearing nutrient. Nature 461(7265):716–718

    Article  CAS  PubMed  Google Scholar 

  9. Adeola O, Cowieson AJ (2011) BOARD-INVITED REVIEW: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J Anim Sci 89(10):3189–3218

    Article  CAS  PubMed  Google Scholar 

  10. Cowieson A, Cooper R (2010) Introduction to the event and overview of the phytase market. In: International phytase summit. International Phytase Summit, Washington, DC

    Google Scholar 

  11. Meyer AS (2010) Enzyme technology for precision functional food ingredient processes. Ann N Y Acad Sci 1190:126–132

    Article  CAS  PubMed  Google Scholar 

  12. Hubenova Y, Georgiev D, Mitov M (2014) Stable current outputs and phytate degradation by yeast-based biofuel cell. Yeast 31(9):343–348

    Article  CAS  PubMed  Google Scholar 

  13. Fujita J, Fukuda H, Yamane Y-I et al (2001) Critical importance of phytase for yeast growth and alcohol fermentation in Japanese sake brewing. Biotechnol Lett 23(11):867–871

    Article  CAS  Google Scholar 

  14. Billington DC (1993) In: Billington DC (ed) The Inositols phosphates: chemical synthesis and biological significance. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  15. Fu S, Sun J, Qian L et al (2008) Bacillus phytases: present scenario and future perspectives. Appl Biochem Biotechnol 151(1):1–8

    Article  CAS  PubMed  Google Scholar 

  16. Kim MS, Weaver JD, Lei XG (2008) Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase. Appl Microbiol Biotechnol 79(5):751–758

    Article  CAS  PubMed  Google Scholar 

  17. Kim MS, Lei XG (2008) Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl Microbiol Biotechnol 79(1):69–75

    Article  CAS  PubMed  Google Scholar 

  18. Shivange AV, Roccatano D, Schwaneberg U (2016) Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Appl Microbiol Biotechnol 100(1):227–242

    Article  CAS  PubMed  Google Scholar 

  19. Wong TS, Roccatano D, Zacharias M et al (2006) A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol 355(4):858–871

    Article  CAS  PubMed  Google Scholar 

  20. Di Giulio M (2005) The origin of the genetic code: theories and their relationships, a review. Biosystems 80(2):175–184

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Kardashliev T, Joelle Ruff A et al (2014) Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations. Biotechnol Bioeng 111(12):2380–2389

    Article  CAS  PubMed  Google Scholar 

  22. Shivange AV, Serwe A, Dennig A et al (2012) Directed evolution of a highly active Yersinia mollaretii phytase. Appl Microbiol Biotechnol 95(2):405–418

    Article  CAS  PubMed  Google Scholar 

  23. Singh B, Satyanarayana T (2009) Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour Technol 100(6):2046–2051

    Article  CAS  PubMed  Google Scholar 

  24. Lehmann M, Kostrewa D, Wyss M et al (2000) From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng 13(1):49–57

    Article  CAS  PubMed  Google Scholar 

  25. Shivange AV, Schwaneberg U, Roccatano D (2010) Conformational dynamics of active site loop in Escherichia coli phytase. Biopolymers 93(11):994–1002

    Article  CAS  PubMed  Google Scholar 

  26. Shivange AV, Dennig A, Schwaneberg U (2014) Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. J Biotechnol 170:68–72

    Article  CAS  PubMed  Google Scholar 

  27. Salverda ML, Dellus E, Gorter FA et al (2011) Initial mutations direct alternative pathways of protein evolution. PLoS Genet 7(3):e1001321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen W, Ye L, Guo F et al (2015) Enhanced activity of an alkaline phytase from Bacillus subtilis 168 in acidic and neutral environments by directed evolution. Biochem Eng J 98:137–143

    Article  CAS  Google Scholar 

  29. Tracewell CA, Arnold FH (2009) Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol 13(1):3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen C-C, Cheng K-J, Ko T-P et al (2015) Current progresses in phytase research: three-dimensional structure and protein engineering. Chem Biol Eng Rev 2(2):76–86

    Google Scholar 

  31. Yao MZ, Zhang YH, Lu WL et al (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112(1):1–14

    Article  CAS  PubMed  Google Scholar 

  32. Liao Y, Zeng M, Wu ZF et al (2012) Improving phytase enzyme activity in a recombinant phyA mutant phytase from Aspergillus niger N25 by error-prone PCR. Appl Biochem Biotechnol 166(3):549–562

    Article  CAS  PubMed  Google Scholar 

  33. Garrett JB, Kretz KA, O’Donoghue E et al (2004) Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl Environ Microbiol 70(5):3041–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu TH, Chen CC, Cheng YS et al (2014) Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. J Biotechnol 175:1–6

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Q, Liu H, Zhang Y (2010) Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. J Biosci Bioeng 110(6):638–645

    Article  CAS  PubMed  Google Scholar 

  36. Zhu W, Qiao D, Huang M et al (2010) Modifying thermostability of appA from Escherichia coli. Curr Microbiol 61(4):267–273

    Article  CAS  PubMed  Google Scholar 

  37. Zhang W, Mullaney EJ, Lei XG (2007) Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl Environ Microbiol 73(9):3069–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Viader-Salvado JM, Gallegos-Lopez JA, Carreon-Trevino JG et al (2010) Design of thermostable beta-propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris. Appl Environ Microbiol 76(19):6423–6430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fei B, Cao Y, Xu H et al (2013) AppA C-terminal plays an important role in its thermostability in Escherichia coli. Curr Microbiol 66(4):374–378

    Article  CAS  PubMed  Google Scholar 

  40. Fei B, Xu H, Cao Y et al (2013) A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. J Ind Microbiol Biotechnol 40(5):457–464

    Article  CAS  PubMed  Google Scholar 

  41. Fu D, Huang H, Meng K et al (2009) Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Biotechnol Bioeng 103(5):857–864

    Article  CAS  PubMed  Google Scholar 

  42. Tran TT, Mamo G, Buxo L et al (2011) Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu. Enzym Microb Technol 49(2):177–182

    Article  CAS  Google Scholar 

  43. Rodriguez E, Wood ZA, Karplus PA et al (2000) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys 382(1):105–112

    Article  CAS  PubMed  Google Scholar 

  44. Tung ET, Ma HW, Cheng C et al (2008) Stabilization of beta-propeller phytase by introducing Xaa-->Pro and Gly-->Ala substitutions at consensus positions. Protein Pept Lett 15(3):297–299

    Article  CAS  PubMed  Google Scholar 

  45. Bei J, Chen Z, Fu J et al (2009) Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. J Biotechnol 139(2):186–193

    Article  CAS  PubMed  Google Scholar 

  46. Xu W, Shao R, Wang Z et al (2015) Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis. Appl Biochem Biotechnol 175(6):3184–3194

    Article  CAS  PubMed  Google Scholar 

  47. Vogt G, Argos P (1997) Protein thermal stability: hydrogen bonds or internal packing? Fold Des 2(4):S40–S46

    Article  CAS  PubMed  Google Scholar 

  48. Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269(4):631–643

    Article  CAS  PubMed  Google Scholar 

  49. Karshikoff A, Nilsson L, Ladenstein R (2015) Rigidity versus flexibility: the dilemma of understanding protein thermal stability. FEBS J 282(20):3899–3917

    Article  CAS  PubMed  Google Scholar 

  50. Folch B, Dehouck Y, Rooman M (2010) Thermo- and mesostabilizing protein interactions identified by temperature-dependent statistical potentials. Biophys J 98(4):667–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Strickler SS, Gribenko AV, Gribenko AV et al (2006) Protein stability and surface electrostatics: a charged relationship. Biochemistry 45(9):2761–2766

    Article  CAS  PubMed  Google Scholar 

  52. Shivange AV, Hoeffken W, Haefner S, Schwaneberg U (2016). Protein consensus based surface engineering (ProCoS): a computer-assisted method for directed protein evolution. Biotechniques 61(6):305–314

    Google Scholar 

  53. Svihus B (2014) Function of the digestive system. J Appl Poult Res 23(2):306–314

    Article  CAS  Google Scholar 

  54. Kim T, Mullaney EJ, Porres JM et al (2006) Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Appl Environ Microbiol 72(6):4397–4403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weaver JD, Mullaney EJ, Lei XG (2007) Altering the substrate specificity site of Aspergillus niger PhyB shifts the pH optimum to pH 3.2. Appl Microbiol Biotechnol 76(1):117–122

    Article  CAS  PubMed  Google Scholar 

  56. Wyss M, Pasamontes L, Friedlein A et al (1999) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol 65(2):359–366

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lassen SF, De Maria L, Friis EP et al. (2012) Hafnia phytase variants. (US20120225468) Novozymes A/S

    Google Scholar 

  58. Lei X (2003) Enzymes with improved phytase activity. (US6511699 B1) Cornell Research Foundation, Inc

    Google Scholar 

  59. Haefner S, Welzel A, and Thummer R (2014) Synthetic phytase variants. (US20140044835) BASF SE

    Google Scholar 

  60. Huang H, Luo H, Wang Y et al (2008) A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Appl Microbiol Biotechnol 80(3):417–426

    Article  CAS  PubMed  Google Scholar 

  61. Greiner R, Farouk AE (2007) Purification and characterization of a bacterial phytase whose properties make it exceptionally useful as a feed supplement. Protein J 26(7):467–474

    Article  CAS  PubMed  Google Scholar 

  62. Niu C, Luo H, Shi P et al (2015) N-glycosylation improves the pepsin resistance of HAP phytases by enhancing the stability at acidic pH and reducing the pepsin accessibility to peptic cleavage sites. Appl Environ Microbiol 82:1004–1014

    Article  PubMed  Google Scholar 

  63. Basu SS and Zhang S (2010) Engineering enzymatically susceptible proteins. (US20100273198 A1) Syngenta Participations Ag

    Google Scholar 

  64. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41(1):207–234

    Article  CAS  PubMed  Google Scholar 

  65. Sajidan A, Farouk A, Greiner R et al (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65(1):110–118

    Article  CAS  PubMed  Google Scholar 

  66. Senn AM, Wolosiuk RA (2005) A high-throughput screening for phosphatases using specific substrates. Anal Biochem 339(1):150–156

    Article  CAS  PubMed  Google Scholar 

  67. Aharoni A, Thieme K, Chiu CP et al (2006) High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat Methods 3(8):609–614

    Article  CAS  PubMed  Google Scholar 

  68. Pitzler C, Wirtz G, Vojcic L et al (2014) A fluorescent hydrogel-based flow cytometry high-throughput screening platform for hydrolytic enzymes. Chem Biol 21(12):1733–1742

    Article  CAS  PubMed  Google Scholar 

  69. Mitra N, Sinha S, Ramya TN et al (2006) N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci 31(3):156–163

    Article  CAS  PubMed  Google Scholar 

  70. Sola RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98(4):1223–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yao MZ, Wang X, Wang W et al (2013) Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol Lett 35(10):1669–1676

    Article  CAS  PubMed  Google Scholar 

  72. Huang H, Luo H, Yang P et al (2006) A novel phytase with preferable characteristics from Yersinia intermedia. Biochem Biophys Res Commun 350(4):884–889

    Article  CAS  PubMed  Google Scholar 

  73. Miksch G, Kleist S, Friehs K et al (2002) Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol 59(6):685–694

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki U, Yoshimura K, Takaishi M (1907) Über ein enzym ‘Phytase’ das anhydro-oxy-methylen diphosphorsaure’ spalter. Tokyo Imp Univ Coll Agric Bull 7:503–512

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol V. Shivange PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shivange, A.V., Schwaneberg, U. (2017). Recent Advances in Directed Phytase Evolution and Rational Phytase Engineering. In: Alcalde, M. (eds) Directed Enzyme Evolution: Advances and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-50413-1_6

Download citation

Publish with us

Policies and ethics