Skip to main content
Log in

The role of thiamine inYersinia kristensenii resistance to antibiotics and heavy metals

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The resistance to divalent metal ions, antibiotics and H2O2 was investigated inYersinia kristensenii strains 13, 15, 18 by performing subcultivations with CdSO4 (20 and 100mg/L) in nutrient agar (NA) and M9 medium with thiamine. Metal resistance of all three strains in NA was the same and decreased in the following sequence: Ni>Zn=Co>Cd. The chloramphenicol (Cmp) resistance ranged between 32 and 256 mg/L and the H2O2 sensitivity was very low or even zero. In the presence of thiamine the metal resistance sequence changed to Zn=Cd>Ni, Co, Ni and Co tolerance being 10–20 mg/L. Cmp resistance of all strains increased to 256 mg/L and H2O2 sensitivity also rose. In Cd-treated cultures, the ratio of glucose to thiamine in culture medium affected Cd resistance. At normal content of glucose and thiamine (5 g/L and 5mg/L), Cd resistance markedly decreased coincident with thiamine exhaustion in these slowly-growing cultures. The Cmp resistance decreased to 16 mg/L, Ni and Co intolerance and H2O2 hypersensitivity appeared. At lowered glucose or thiamine levels (5 g/L and 2.5 mg/L or 2.5 g/L and 5 mg/L) a marginal decrease of Cd resistance took place in response to limited glucose uptake. Low thiamine or low-glucose cultures were resistant to H2O2, and exhibited a small decrease in Cmp resistance and a low Ni, Co tolerance. The adaptation of strain 15 to Cd induced only a small decrease of Cd resistance. Lowered glucose-to-thiamine ratio in culture medium probably induced in Cd-treated cultures a response triggering Cd resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asad N.R., Leitao A.C.: Effects of metal ion on DNA strand breaks and inactivation produced by hydrogen peroxide inE. coli: Detection of iron-independent lesions.J. Bacteriol.173, 2562–2568 (1991).

    PubMed  CAS  Google Scholar 

  • Beard S.J., Huges M.N., Poole R.K.: Inhibition of the cytochromebd-terminated NADH oxidase system inE. coli K12 by divalent metal cations.FEMS Microbiol. Lett.131, 205–210 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bercovier H., Ursing J., Brenner D.J., Steigerwalt A.G., Fanning G.R., Carter G.P., Mollaret H.H.:Yersinia kristensenii: a new species ofEnterobacteriaceae composed of sucrose-negative strains (formerly called atypicalYersinia enterocolitica orYersinia enterocolitica-like).Curr. Microbiol.4, 219–224 (1980).

    Article  CAS  Google Scholar 

  • Buchanan R.L., Edelson S.G.: Culturing enterohemorrhagicE. coli in the presence and absence of glucose as a simple means of evaluating the acid tolerance of stationary-phase cells.Appl. Environ. Microbiol.62, 4009–4013 (1996).

    PubMed  CAS  Google Scholar 

  • Bucheder F., Broda E.: Energy-dependent zinc transport byE. coli.Eur. J. Biochem.45, 555–559 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Cohen I., Bitan R., Nitzan Y.: The effect of zinc and cadmium ions onE. coli B.Microbios68, 276–277 (1991).

    Google Scholar 

  • Fitt P.S., Sharma N.: Starvation as an inducer of error-free DNA repair inE. coli.Mutat. Res.262, 145–150 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Gadd G.M.: Metal and microorganisms: a problem of definition.FEMS Microbiol. Lett.100, 197–204 (1992).

    Article  CAS  Google Scholar 

  • Goldman J.: Conceptual role for microaggregates inpelagic waters.Bull. Marine Sci.35, 462–467 (1984).

    Google Scholar 

  • Halliwel B., Gutterridge J.M.C.: Biologically relevant metal ion-dependent hydroxyl radical generation: an update.FEBS Lett.307, 108–112 (1992).

    Article  Google Scholar 

  • Kogoma T., Yura T.: Sensitization ofE. coli cells to oxidative stress by deletion ofrpoH gene, which encodes the heat shock sigma factor.J. Bacteriol.174, 630–632 (1992).

    PubMed  CAS  Google Scholar 

  • LaRossa R.A., Smulski D.R., Van-Dyk T.K.: Interaction of lead nitrate and cadmium chloride withE. coli K12 andS. typhimurium global regulatory mutants.J. Ind. Microbiol.14, 252–258 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Miller J.H.:Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor (NY) 1972.

    Google Scholar 

  • Matin A.: Physiology, molecular biology and application of the starvation response.J. Appl. Bacteriol.73, 49S-57S (1992).

    Google Scholar 

  • Matin A.: Role of alternate sigma factors in starvation protein synthesis—novel mechanisms of catabolite repression.14th Forum in Microbiology: Regulation of Carbon Metabolism in Bacteria, pp. 494–505 (1996).

  • Nies H.D.: Resistance to cadmium, cobalt, zinc and nickel in microbes.Plasmids27, 17–28 (1992).

    Article  CAS  Google Scholar 

  • Nies D.H., Silver S.: Ion efflux systems involved in bacterial metal resistances.J. Ind. Microbiol.14, 186–199 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Pickett A.W., Dean A.C.R.: Cadmium and zinc sensitivity and tolerance inKlebsiella (Aerobacter) aerogenes.Microbios15, 51–64 (1979).

    Google Scholar 

  • Shin S.Y., Calvisi G.E., Beaman T.C., Pankratz H.S., Gerhardt P., Marquis R.E.: Microscopic and thermal characterization of hydrogen peroxide killing and lysis of spore and protection by transition metal ions, chelators, and antioxidants.Appl. Environ. Microbiol.60, 3192–3197 (1994).

    PubMed  CAS  Google Scholar 

  • Scott J.A., Sage G.K., Palmer S.J., Powel D.S.: Cadmium adsorbtion by bacterial capsular polysaccharide coatings.Biotechnol. Lett.8, 711–714 (1986).

    Article  CAS  Google Scholar 

  • Shingaki R., Gorlach K., Hattori T., Samukawa K., Morisaki H.: The cell surface of fast-and slow-growing bacteria isolated from a paddy soil.J. Gen. Appl. Microbiol.40, 479–475 (1994).

    Google Scholar 

  • Thiesen H.J., Bach C.: Transition metals modulate DNA-protein interactions of SP1 zinc finger domain with its cognate target site.Biochem. Biophys. Res. Commun.176, 551–557 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Trevors J.T., Stratton G.W., Gadd G.M.: Cadmium transport resistance and toxicity in bacteria, algae and fungi.Can. J. Microbiol.32, 447–464 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Ürgeová E., Lysý J.: Ecology study ofYersinia isolated from small terrestrial mammals captured in the territory of the barrage system Gabčíkovo 1990–1994, pp. 46–47 inContrib. Microbiol. Immunol., Vol. 13 (G. Ravagan, C. Chiesa, Eds). Karger, Basel 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hušťavová, H., Havraneková, D. The role of thiamine inYersinia kristensenii resistance to antibiotics and heavy metals. Folia Microbiol 42, 569–573 (1997). https://doi.org/10.1007/BF02815467

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815467

Keywords

Navigation