Skip to main content
Log in

Interaction of lead nitrate and cadmium chloride withEscherichia coli K-12 andSalmonella typhimurium global regulatory mutants

  • Published:
Journal of Industrial Microbiology

Summary

To investigate the interactions of heavy metals with cells, a minimal medium for the growth of enteric bacteria using glycerol-2-phosphate as the sole phosphorus source was developed that avoided precipitation of Pb2+ with inorganic phosphate. Using this medium, spontaneous mutants ofEscherichia coli resistant to addition of Pb(NO3)2 were isolated. Thirty-five independent mutants all conferred a low level of resistance. Disk diffusion assays on solid medium were used to survey the response ofE. coli andSalmonella typhimurium mutants altered in global regulatory networks to Pb(NO3)2) and CdCl2. Strains bearing mutations inoxyR andrpoH were the most hypersensitive to these compounds. Based upon the response of strains completely devoid of isozymes needed to inactivate reactive oxygen species, this hypersensitity to lead and cadmium is attributable to alteration in superoxide dismutase rather than catalase levels. Similar analysis of chaperonedefective mutants suggests that these metals damage proteins in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochner, B.R. and B.N. Ames. 1982. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J. Biol. Chem. 257: 9759–9769.

    PubMed  Google Scholar 

  2. Carlioz, A. and D. Touati. 1986. Isolation of superoxide dismutase mutants inEscherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 5: 623–630.

    PubMed  Google Scholar 

  3. Casadaban, M.J. 1976. Transposition and fusion of thelac genes to selected promoters inEscherichia coli using bacteriophage Lambda and Mu. J. Mol. Biol. 104: 541–555.

    Google Scholar 

  4. Christman, M.F., R.W. Morgan, F.S. Jacobson and B.N. Ames. 1985. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins inSalmonella typhimurium. Cell 41: 753–762.

    PubMed  Google Scholar 

  5. Craig, E.A. and C.A. Gross. 1991. Is hsp 70 the cellular thermometer? Trends Biochem. Sci. 16: 135–140.

    PubMed  Google Scholar 

  6. Davis, R.W., D. Botstein and J.R. Roth. 1980. Advanced Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  7. Ernsting, B.R., M.R. Atkinson, A.J. Ninfa and R.G. Matthews. 1992. Characterization of the regulon controlled by the leucineresponsive regulatory protein inEscherichia coli. J. Bacteriol. 174: 1109–1118.

    PubMed  Google Scholar 

  8. Fayet, O., J.M. Louarn and C. Georgopoulos. 1986. Suppression of theEscherichia coli dnaA46 mutation by amplification of thegroES andgroEL genes. Mol. Gen. Genet 202: 435–445.

    PubMed  Google Scholar 

  9. Greenberg, J.T., J.H. Chou, P.A. Monach and B. Demple. 1991. Activation of oxidative stress genes by mutations at thesoxQ/cfxB/marA locus ofEscherichia coli. J. Bacteriol. 173: 4433–4439.

    PubMed  Google Scholar 

  10. Greenberg, J.T., P. Monach, J.H. Chou, P.D. Josephy and B. Demple. 1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents inEscherichia coli. Proc. Natl. Acad. Sci. USA 87: 6181–6185.

    PubMed  Google Scholar 

  11. Hartman, P.E. and D.C. Kuo. 1987. Cd2+ tolerance inEscherichia coli andSalmonella typphimurium. Environ. Mutagen 10: 89–95.

    Google Scholar 

  12. Jensen, K.F. 1993. TheEscherichia coli K-12 ‘wild type’ W3110 and MG1655 have anrph frameshift mutation that leads to pyrimidine starvation due to lowpyrE expression levels. J. Bacteriol. 175: 3401–3407.

    PubMed  Google Scholar 

  13. Kusukawa, N. and T. Yura. 1988. Heat shock protein GroE ofEscherichia coli: key protective roles against thermal stress. Genes Dev. 2: 874–882.

    PubMed  Google Scholar 

  14. LaRossa, R.A. and T.K. Van Dyk. 1991. Physiological roles of the DnaK and GroE stress proteins: catalysts of protein folding or macromolecular sponges? Molec. Microbiol. 5: 529–534.

    Google Scholar 

  15. Loewen, P.C. and B.L. Triggs. 1984. Genetic mapping ofkatF, a locus that withkatE affects the synthesis of a second catalase species inEscherichia coli. J. Bacteriol. 160: 668–675.

    PubMed  Google Scholar 

  16. Macaskie, L.E. and A.C.R. Dean. 1982. Cadmium accumulation by microorganisms. Environ. Technol. Lett. 3 49–56.

    Google Scholar 

  17. Maloy, S.R. and W.D. Nunn. 1981. Selection for loss of tetracycline resistance byEscherichia coli. J. Bacteriol. 145: 1110–1112.

    PubMed  Google Scholar 

  18. Menzel, R. 1989. A microtiter plate-based system for the semiautomated growth and assay of bacterial cells for β-galactosidase activity. Anal. Biochem. 181: 40–50.

    PubMed  Google Scholar 

  19. Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  20. Mulvey, M.R., P.A. Sorby, B.L. Triggs-Raine and P.C. Loewen. 1988. Cloning and physical characterization ofkatE andkatF required for catalase HPII expression inEscherichia coli. Gene 73: 337–345.

    PubMed  Google Scholar 

  21. Neidhardt, F.C., P.L. Bloch and D.F. Smith. 1974. Culture medium for Enterobacteria. J. Bacteriol. 119: 736–747.

    PubMed  Google Scholar 

  22. Neidhardt, F.C. and R.A. VanBogelen. 1987. Heat shock response. In:Escherichia coli andSalmonella typhimurium. Cellular and Molecular Biology (Neidhardt, F., ed.), pp. 1334–1345, F.C. American Society for Microbiology, Washington, DC.

    Google Scholar 

  23. Parsell, D.A. and S. Lindquist. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437–496.

    PubMed  Google Scholar 

  24. VanBogelen, R.A., P.M. Kelley and F.C. Neidhardt. 1987. Differential induction of heat shock, SOS and oxidation stress regulon and accumulation of nucleotides inEscherichia coli. J. Bacteriol. 169: 26–32.

    PubMed  Google Scholar 

  25. Xiao, H., M. Kalman, K. Ikehara, S. Zemel, G. Glaser and M. Cashel. 1991. Residual guanosine 3′,5′-bispyrophosphate synthetic activity ofrelA null mutants can be eliminated byspoT null mutations. J. Biol. Chem. 266: 5980–5990.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaRossa, R.A., Smulski, D.R. & Van Dyk, T.K. Interaction of lead nitrate and cadmium chloride withEscherichia coli K-12 andSalmonella typhimurium global regulatory mutants. Journal of Industrial Microbiology 14, 252–258 (1995). https://doi.org/10.1007/BF01569936

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569936

Key words

Navigation