Skip to main content
Log in

Proteins of the intermediate filament cytoskeleton as markers for astrocytes and human astrocytomas

  • Published:
Molecular and chemical neuropathology

Abstract

There is a pressing need for a more accurate system of classifying human astrocytomas, one that is based on morphologic characteristics and that could also make use of distinctive biochemical markers. However, little is known about the phenotypic characteristics of astrocytomas. Recent studies have shown that the expression of proteins comprising the intermediate filament (IF) cytoskeleton of astrocytic cells is developmentally regulated. It is our hypothesis that this changing protein profile can be used as the basis of a system for clearly and objectively classifying astrocytomas. A spectrum of human astrocytomas has been examined by immunofluorescence microscopy employing antibodies to several IF structural subunit proteins (GFAP, vimentin, and keratins) and an IF-associated protein IFAP-300kDa. These proteins occupy unique temporal niches in the cytogenesis of the astrocytic cells: keratins in cells of the neuroectoderm; vimentin and IFAP-300kDa in radial glia and immature glia; GFAP in mature astrocytes; and vimentin in some mature astrocytes. In agreement with previous reports, our immunofluorescence studies have revealed both GFAP and vimentin in all astrocytoma specimens. Two new observations, however, are of particular interest: IFAP-300kDa is detectable in all astrocytic tumors, and the proportion of keratin-containing cells present in the astrocytomas is in direct relationship to the degree of the malignancy. Because IFAP-300kDa is not present in either normal mature or reactive astrocytes, this protein appears to represent a specific marker of transformed (malignant) astrocytes. If it is presumed that higher malignancy grades represent the most dedifferentiated cellular state of the astrocytes, the presence of keratin-containing cells is not totally unexpected, given the ectodermal (epithelial) origin of the CNS. Specific developmentally regulated proteins of the IF cytoskeleton thus appear to hold great potential as diagnostic markers of astrocytomas and as tools for investigating the biology of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-El-Basset E. M., Kalnins V. I., Subrahmanyan L., Ahmed I., and Fedoroff S. (1988a). 48-kilodalton intermediate-filament-associated protein in astrocytes.J. Neurosci. Res. 19, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Abd-El-Basset E M., Kalnins V. I., and Fedoroff S. (1988b) Expression of 48-kilodalton intermediate filament-associated protein in differentiating and in mature astrocytes in various regions of the central nervous system.J. Neurosci. Res. 21, 226–237.

    Article  CAS  PubMed  Google Scholar 

  • Aebi U., Cohn J., Buhle L., and Gerace L. (1986) The nuclear lamina is a meshwork of intermediate-type filaments.Nature 323, 560–564.

    Article  CAS  PubMed  Google Scholar 

  • Albers K. and Fuchs E. (1992) The molecular biology of intermediate filament proteins.Intl. Rev. Cytol. 134, 243–279.

    Article  CAS  Google Scholar 

  • Alvord E. C., Jr. (1992) Is necrosis helpful in the grading of gliomas?J. Neuropathol. Exp. Neurol. 51, 127–132.

    Article  PubMed  Google Scholar 

  • Antanitus D. S., Choi B. H., and Lapham L. W. (1976) The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence.Brain Res. 103, 613–616.

    Article  CAS  PubMed  Google Scholar 

  • Bailey P. and Cushing H. (1926)A Classification of the Tumors of the Glioma Group on a Histogenetic Basis with a Correlated Study of Prognosis, J.B. Lippincott Co., Philadelphia.

    Google Scholar 

  • Bignami A., Eng L. F., Dahl D., and Uyeda C. T. (1972) Localization of the glial fibrillary acidic protein, in astrocytes by immunofluorescence.Brain Res. 43, 429–435.

    Article  CAS  PubMed  Google Scholar 

  • Bignami A., Raju T., and Dahl D. (1982) Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons.Dev. Biol. 91, 286–295.

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund H., Eriksdotter-Nilsson M., Dahl D., and Olson L. (1984) Astrocytes in smears of CNS tissues as visualized by GFA and vimentin immunofluorescence.Med. Biol. 62, 38–48.

    CAS  PubMed  Google Scholar 

  • Bloom G. S. and Vallee R. B. (1983) Association of microtubule associated protein 2 (MAP-2) with microtubules and intermediate filaments in cultured brain cells.J. Cell Biol. 96, 1523–1531.

    Article  CAS  PubMed  Google Scholar 

  • Bongcam-Rudloff E., Nister M., Betsholtz C., Wang J.-L., Stenman G., Huebner K., Croce C. M., and Westermark B. (1991) Human glial fibrillary acidic protein: Complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes.Cancer Res. 51, 1553–1560.

    CAS  PubMed  Google Scholar 

  • Bovolenta P., Liem R. K., and Mason C. A. (1984) Development of cerebellar astroglia: Transitions in form and cytoskeletal content.Dev. Biol. 102, 248–259.

    Article  CAS  PubMed  Google Scholar 

  • Breckler J. and Lazarides E. (1982) Isolation of a new high molecular weight protein associated with desmin and vimentin filaments from avian embryonic skeletal muscle.J. Cell Biol. 92, 795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger P. C., Vogel F. S., Green S. B., and Strike T. A. (1985) Glioblastoma and anaplastic astrocytoma: Pathologic criteria and prognostic implications.Cancer 56, 1106–1111.

    Article  CAS  PubMed  Google Scholar 

  • Burger P. C., Vogel F. S., and Scheithauer B. (1989)Surgical Pathology of the Nervous System and Its Coverings, 3rd ed., Wiley, New York.

    Google Scholar 

  • Chabot P. and Vincent M. (1990) Transient expression of an intermediate filament-associated protein (IFAPa-400) duringin vivo andin vitro differentiation of chick embryonic cells derived from neuroectoderm.Dev. Brain Res. 54, 195–204.

    Article  CAS  Google Scholar 

  • Chisholm J. C. and Houliston E. (1987) Cytokeratin filament assembly in the pre-implantation mouse embryo.Development 101, 565–582.

    CAS  PubMed  Google Scholar 

  • Choi B. H. (1981) Radial glia of developing fetal spinal cord: Golgi, immuno-histochemical and electron microscopic study.Dev. Brain Res. 1, 249–267.

    Article  Google Scholar 

  • Choi B. H. (1986) Glial fibrillary acidic protein in radial glia of early human fetal cerebrum: A light and electron microscopic immunoperoxidase study.J. Neuropathol. Exp. Neurol. 45, 408–418.

    Article  CAS  PubMed  Google Scholar 

  • Choi B. H. (1990) Gliogenesis in the developing human fetal brain, inDifferentiation and Functions of Glial Cells. (G. Levi, ed.), Wiley-Liss, New York, pp. 9–16.

    Google Scholar 

  • Choi B. H. and Lapham L. W. (1978) Radia glial in the human fetal cerebrum: A combined Golgi, immunofluorescent and electron microscopic study.Brain Res. 148, 295–311.

    Article  CAS  PubMed  Google Scholar 

  • Ciment G., Resler A., Letourneau P. C., and Weston J. A. (1986) A novel intermediate filament-associated protein, NAPA-73, that binds to different filament types at different stages of nervous system development.J. Cell Biol. 102, 246–251.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove M., Fitzgibbons P. L., Sherrod A., Chandrasoma P. T., and Martin S. E. (1989) Intermediate filament expression in astrocytic neoplasms.Am. J. Surg. Pathol. 13, 141–145.

    Article  CAS  PubMed  Google Scholar 

  • Dahl D. (1981) The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination.J. Neurosci. Res. 6, 741–748.

    Article  CAS  PubMed  Google Scholar 

  • Dahl D., Bignami A., Weber K., and Osborn M. (1981a) Filament proteins in rat optic nerves undergoing Wallerian degeneration: Localization of vimentin, the fibroblast 100-A filament protein, in normal and reactive astrocytes.Exp. Neurol. 73, 496–506.

    Article  CAS  PubMed  Google Scholar 

  • Dahl D., Rueger D. C., Bignami A., Weber K., and Osborn M. (1981b) Vimentin, the 57,000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia.Eur. J. Cell Biol. 24, 191–196.

    CAS  PubMed  Google Scholar 

  • Dahl D., Zapatka S., and Bignami A. (1986) Heterogeneity of desmin, the muscle-type intermediate filament protein, in blood vessels and astrocytes.Histochemistry 84, 143–150.

    Article  Google Scholar 

  • Dale B. A. (1977) Purification and characterization of a basic protein from the stratum corneum of mammalian epidermis.Biochim. Biophys. Acta 491, 193–304.

    Article  CAS  PubMed  Google Scholar 

  • Dale B. A., Resing K. A., and Haydock P. V. (1990) Filaggrins, inCellular and Molecular Biology of Intermediate Filaments, (Goldman R. D. and Steinert, P. M., eds.), Plenum, New York, pp. 393–412.

    Chapter  Google Scholar 

  • Daumas-Duport C., Scheithauer B., O’Fallon J., and Kelly P. (1988) Grading of astrocytomas: A simple and reproducible method.Cancer 62, 2152–2165.

    Article  CAS  PubMed  Google Scholar 

  • Davis D. L., Hoel D., Fox J., and Lopez A. (1990) International trends in cancer motality in France, West Germany, Italy, Japan, England and Wales, and the USA.Lancet 336, 474–481.

    Article  CAS  PubMed  Google Scholar 

  • Deck, J. H. N., Eng L. F., Bigbee J., and Woodcock S. M. (1978) The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors.Acta Neuropathol. 42, 183–190.

    Article  CAS  PubMed  Google Scholar 

  • Duffy P. E., Graf L., and Rapport M. M. (1977) Identification of glial fibrillary acidic protein by the immunoperoxidase method in human brain tumors.J. Neuropathol. Exp. Neurol. 36, 645–652.

    Article  CAS  PubMed  Google Scholar 

  • Duffy P. E., Huang Y.-Y., and Rapport M. M. (1982) The relationship of glial fibrillary acidic protein to the shape, motility, and differentiation of human astrocytoma cells.Exp. Cell Res. 139, 145–157.

    Article  CAS  PubMed  Google Scholar 

  • Eng L. F. and Rubinstein L. J. (1978) Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors.J. Histochem. Cytochem. 26, 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Eng L. F., Vanderhaeghen J. J., Bignami A, and Gerstl B. (1971) An acidic protein isolated from fibrous astrocytes.Brain Res. 28, 351–354.

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff S. (1986) Prenatal ontogenesis of astrocytes, inAstrocytes (Fedoroff S. and Vernadakis A., eds.), vol. 1, Academic, New York, pp. 35–74.

    Chapter  Google Scholar 

  • Fliegner K. H. and Liem R. K. H. (1991) Cellular and Molecular biology of neuronal intermediate filaments.Intl. Rev. Cytol. 131, 109–167.

    Article  CAS  Google Scholar 

  • Fiosner R. and Wiche G. (1991) Intermediate filament-associated proteins.Curr. Opin. Cell Biol. 3, 75–81.

    Article  Google Scholar 

  • Franko M. C., Gibbs C. J., Jr., Rhoades D. A., and Gajdusek D. C. (1987) Monoclonal antibody analysis of keratin expression in the central nervous system.Proc. Natl. Acad. Sci. USA 84, 3482–3485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulling K. H. and Nelson J. S. (1984) Cerebral astrocytic neoplasms in the adult: Contribution of histologic examination to the assessment of prognosis.Semin. Diag. Pathol. 1, 152–163.

    CAS  Google Scholar 

  • Giordano S., Glasgow E., Tesser P., and Schechter N. (1989) A type II keratin is expressed in glial cells of the goldfish visual pathway.Neuron 2, 1507–1516.

    Article  CAS  PubMed  Google Scholar 

  • Goldman A. E., Maul G., Steinert P. M., Yang H.-Y., and Goldman R. D. (1986) Keratin-like proteins that co-isolate with intermediate filaments of BHK-21 cells are nuclear lamins.Proc. Natl. Acad. Sci. USA 83, 3839–3843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman J. E., Schaumburg H. H., and Norton W. T. (1978) Isolation and characterization of glial filaments from human brain.J. Cell Biol. 78, 426–440.

    Article  CAS  PubMed  Google Scholar 

  • Goldman R. D. and Steinert P. M. (eds.) (1990)Cellular and Molecular Biology of Intermediate Filaments, Plenum, New York.

    Google Scholar 

  • Goldman R. D., Goldman A. E., Green K. J., Jones J. C. R., Lieska N., and Yang H.-Y. (1985) Intermediate filaments: Possible functions as cytoskeletal connecting links between the nucleus and the cell surface.Ann. NY Acad. Sci. 455, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Goldman R. D., Goldman A. E., Green K., Jones J. C. R., Jones S. M., and Yang H.-Y. (1986) Intermediate filament networks: Organization and possible functions of a diverse group of cytoskeletal elements.J. Cell Sci. Suppl. 5, 69–97.

    Article  Google Scholar 

  • Granger B. L. and Lazarides E. (1980) Synemin: A new high molecular weight protein associated with desmin and vimentin filaments in muscle.Cell 22, 727–738.

    Article  CAS  PubMed  Google Scholar 

  • Gullota F., Schindler F., Schmutzler R., and Weeks-Seifert A. (1985) GFAP in brain tumor diagnosis: Possibilities and limitations.Path. Res. Pract. 180, 54–60.

    Article  Google Scholar 

  • Hamaya K., Doi K., Tanaka T, and Nishimoto A. (1985) The determination of glial fibrillary acidic protein for the diagnosis and histogenetic study of central nervous system tumors: A study of 152 cases.Acta Med. Okayama 39, 453–462.

    CAS  PubMed  Google Scholar 

  • Herpers M. J. H. M., Budka H., and McCormick D. (1984) Production of glial fibrillary acidic protein (GFAP) by neoplastic cells: Adaptation to the micro-environment.Acta Neuropathol. 64, 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Herpers M. J. H. M., Ramaekers F. C. S., Aldeweireldt J., Moesker O., and Sloof J. (1986) Co-expression of glial fibrillary acidic protein- and vimentin-type intermediate filaments in human astrocytomas.Acta Neuropathol. 70, 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Houle J. and Fedoroff S. (1983) Temporal relationship between the appearance of vimentin and neural tube development.Dev. Brain Res. 9, 189–195.

    Article  Google Scholar 

  • Jackson B. W., Grund C., Schmid E., Burki K., Franke W. W., and Illmensee K. (1980) Formation of cytoskeletal elements during mouse embryogenesis.Differentiation 17, 161–179.

    Article  CAS  PubMed  Google Scholar 

  • Jackson B. W., Grund C., Winter S., Franke W. W., and Illmensee K. (1981) Formation of cytoskeletal elements during mouse embryogenesis, II. Epithelial differentiation and intermediate-sized filaments in early postimplantation embryos.Differentiation 20, 203–216.

    Article  CAS  PubMed  Google Scholar 

  • Jones J. C. R. and Goldman R. D. (1985) Intermediate filaments and the initiation of desmosome assembly.J. Cell Biol. 101, 506–517.

    Article  CAS  PubMed  Google Scholar 

  • Kernohan J. W. and Sayre G. P. (1952)Tumors of the Central Nervous System, Armed Forces Institute of Pathology, Washington, DC.

    Google Scholar 

  • Lawson D. (1983) Epinemin: A new protein associated with vimentin filaments in nonneural cells.J. Cell Biol. 97, 1891–1905.

    Article  CAS  PubMed  Google Scholar 

  • Landry C. F., Ivy G. O., and Brown I. R. (1990) Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed byin situ hybridization.J. Neurosci. Res. 25, 194–203.

    Article  CAS  PubMed  Google Scholar 

  • Lazarides E. (1980) Intermediate filaments as mechanical integrators of cellular space.Nature 283, 249–253.

    Article  CAS  PubMed  Google Scholar 

  • Lehtonen E., Lehto V.-P., Vartio T., Badley R. A., and Virtanen I. (1983) Expression of cytokeratin polypeptides in mouse oocytes and preimplantation embryos.Dev. Biol. 100, 158–165.

    Article  CAS  PubMed  Google Scholar 

  • Lendahl U., Zimmerman L. B., and McKay R. D. S. (1990) CNS stem cells express a new class of intermediate filament protein.Cell 60, 585–595.

    Article  CAS  PubMed  Google Scholar 

  • Levitt P. and Rakic P. (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing Rhesus monkey brain.J. Comp. Neurol. 193, 815–840.

    Article  CAS  PubMed  Google Scholar 

  • Lieska N., Yang H.-Y., and Goldman R. D. (1985) Purification of the 300k intermediate filament-associated protein and itsin vitro recombination with intermediate filaments.J. Cell Biol. 101, 802–813.

    Article  CAS  PubMed  Google Scholar 

  • Lieska N., Shao D., Kriho V., and Yang H.-Y. (1991) Expression and distribution of cytoskeletal IFAP-300kDa as an index of lens cell differentiation.Curr. Eye Res 10, 1165–1174.

    Article  CAS  PubMed  Google Scholar 

  • Lukas Z., Draber P., Bucek J., Draberova E., Viklicky V., and Staskova Z. (1989) Expression of vimentin and glial fibrillary acidic protein in human developing spinal cord.Histochem. J. 21, 693–702.

    Article  CAS  PubMed  Google Scholar 

  • Mangeat P. H. and Burridge K. (1984) Immunoprecipitation of non-erythrocyte spectrin within live cells following microinjection of spectrin antibodies: Relation of cytoskeletal structures.J. Cell Biol. 98, 1363–1377.

    Article  CAS  PubMed  Google Scholar 

  • McDermott K. W. G. and Lantos P. L. (1989) The distribution of glial fibrillary acidic protein and vimentin in postnatal marmoset (Callithrix jacchus) brain.Dev. Brain Res 45, 169–177.

    Article  CAS  Google Scholar 

  • McKeon F. D., Kirschner M. W., and Caput D. (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins.Nature 319, 463–468.

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y., Hoshi M., Nishida E., Minami Y., and Sakai H. (1986) Binding of microtubule-associated protein 2 and tau to the intermediate filament reassembled from neurofilament 70 kDa subunit protein.J. Biol. Chem. 261, 13026–13030.

    CAS  PubMed  Google Scholar 

  • Nelson J. S., Tsukada Y., Schoenfeld D., Fulling K., Lamarche J., and Peress N. (1983) Necrosis as a prognostic criterion in malignant supratentorial, astrocytic gliomas.Cancer 52, 550–554.

    Article  CAS  PubMed  Google Scholar 

  • Ng H-K and Lo S. T. H. (1989) Cytokeratin immunoreactivity in gliomas.Histopathology 14, 359–368.

    Article  CAS  PubMed  Google Scholar 

  • Osborn M. and Weber K. (1982) Intermediate filaments: Cell type specific markers in differentiation and pathology.cell 31, 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Osborn M. and Weber K. (eds.) (1982)Cytoskeletal Proteins in Tumor Diagnosis, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Pappas G. D., Glick R. P., Shao D., Johnson-Seaton D., and Yang H.-Y. (1990) An intermediate filament-associated protein, IFAP-300kDa, as a marker for human astrocytomas.Soc. Neurosci. Abstr. 16, 350.

    Google Scholar 

  • Pixley S. K. R. and DeVellis J. (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin.Dev. Brain Res. 15, 201–209.

    Article  Google Scholar 

  • Price M. G. and Lazarides E. (1983) Expression of intermediate filament-associated protein paranemin and synemin in chicken development.J. Cell Biol. 97, 1860–1874.

    Article  CAS  PubMed  Google Scholar 

  • Pytela R. and Wiche G. (1980) High molecular weight polypeptides (270,000–340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments.Proc. Natl. Acad. Sci. USA 77, 4808–4812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju T., Bignami A., and Dahl D. (1981)In vivo andin vitro differentiation of neurons and astrocytes in the rat embryo.Dev. Biol. 85, 344–357.

    Article  CAS  PubMed  Google Scholar 

  • Ringertz N. (1950) “Grading” of gliomas.Acta Pathol. Microbiol. Scand. 27, 51–64.

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein L. J. (1972)Tumors of the Central Nervous System, AFIP atlas of tumor pathology, Series 2, Fascicle 6, Armed Forces Institute of Pathology, Washington, DC.

    Google Scholar 

  • Rungger-Brandle E., Achtstatter T., and Franke W. W. (1989) An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes.J. Cell Biol. 109, 705–716.

    Article  CAS  PubMed  Google Scholar 

  • Russell D. S. and Rubinstein L. J. (1989)Pathology of Tumours of the Nervous System, 5th ed., Williams and Wilkins, Baltimore.

    Google Scholar 

  • Schiffer D., Giordana M. T., Germano I., and Mauro A. (1986) Anaplasia and heterogeneity of GFAP expression in gliomas.Tumori 72, 163–170.

    Article  CAS  PubMed  Google Scholar 

  • Schiffer D., Giordana M. T., Mauro A., Migheli A., Germano I., and Giaccone G. (1986b) Immunohistochemical demonstration of vimentin in human cerebral tumors.Acta Neuropathol. 70, 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Schiffer D., Giordana M. T., Mighili A., Giaccone G., Pezzotta S., and Mauro A. (1986) Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brian.Brain Res. 374, 110–118.

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer J., Franke W. W., and Schachner M. (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of the developing and adult mouse nervous system.J. Cell Biol. 90, 435–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinert P. M. and Roop D. R. (1988) Molecular and cellular biology of intermediate filaments.Annu. Rev. Biochem. 57, 593–625.

    Article  CAS  PubMed  Google Scholar 

  • Svien H. J., Mabon R. F., Kernohan J. W., Adson A. W. (1949) Astrocytomas.Proc. Staff Meet. Mayo Clinic 24, 54–64.

    CAS  Google Scholar 

  • Tohyama T., Lee V. M.-Y., Rorke L. B., Marvin M., McKay R. D. G., and Trojanowski J. Q. (1992) Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells.Lab. Invest. 66, 303–313.

    CAS  PubMed  Google Scholar 

  • Tohyama T., Lee V. M.-Y., and Trojanowski J. Q. (1993) Co-expression of low molecular weight neurofilament protein and glial fibrillary acidic protein in established human glioma cell lines.Am. J. Pathol. 142, 883–892.

    CAS  Google Scholar 

  • Traub P. (1985)Intermediate Filaments: A Review. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Tseng S. C. G., Jarvinen M. J., Nelson W. G., Huang J.-W., Woodcock-Mitchell J., and Sun T.-T. (1982) Correlation of specific keratins with different types of epithelial differentiation: Monoclonal antibody studies.Cell 30, 361–372.

    Article  CAS  PubMed  Google Scholar 

  • Velasco M. E., Dahl D., Roessmann U., and Gambetti P. (1980) Immunohistochemical localization of glial fibrillary acidic protein in human glial neoplasms.Cancer 45, 484–494.

    Article  CAS  PubMed  Google Scholar 

  • Wang E., Cairncross E. J., Yung W. K. S., Garber E. R., and Liem R. K. H. (1983) An intermediate filament-associated protein, p50, recognized by monoclonal antibodies.J. Cell Biol. 97, 1507–1514.

    Article  CAS  PubMed  Google Scholar 

  • Wang E., Fischman D., Liem R. K. H., and Sun T.-T. (eds.), (1985)Intermediate Filaments. Ann. NY Acad. Sci., vol. 455.

  • Weinstein D. E., Shelanski M. L., and Liem R. K. H. (1991) Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons.J. Cell Biol. 112, 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  • Wiche G., Becker B., Luber K., Weitzer G., Castanon M. J., Hauptmann R., et al. (1991) Cloning and sequencing of rat plectin indicates a 466-kDa polypeptide chain with a three-domain structure based on a central alpha-helical coiled coil.J. Cell Biol. 114, 83–99.

    Article  CAS  PubMed  Google Scholar 

  • Yang H.-Y., Lieska N., Goldman A. E., and Goldman R. D. (1985) A 300,000-mol-wt intermediate filament-associated protein in baby hamster kidney (BHK-21) cells.J. Cell Biol. 100, 620–631.

    Article  CAS  PubMed  Google Scholar 

  • Yang H.-Y., Lieska N., and Goldman R. D. (1990a) Intermediate filament-associated proteins, inCellular and Molecular Biology of Intermediate Filaments, (Goldman R. D. and Steinert P. M. eds.), Plenum, New York, pp. 371–391.

    Chapter  Google Scholar 

  • Yang H.-Y., Kriho V., Johnson-Seaton D., and Pappas G. D. (1990b) Expression of an intermediate filament-associated protein, IFAP-70/280kDa, in radial glia and in reactive astrocytes of rats.Soc. Neurosci. Abstr. 16, 352.

    Google Scholar 

  • Yang H.-Y., Lieska N., Goldman A. E., and Goldman R. D. (1992a) Colchicine-sensitive and colchicine-insensitive intermediate filament systems distinguished by a new intermediate filament-associated protein, IFAP-70/280KDa.Cell Motil. Cytoskeleton 22, 185–199.

    Article  CAS  PubMed  Google Scholar 

  • Yang H.-Y., Lieska N., Goldman R. D., Johnson-Seaton D., and Pappas G. D. (1992b) Distinct developmental subtypes of cultured non-stellate rat astrocytes distinguished by a new glial intermediate filament-associated protein.Brain Res. 573, 161–168.

    Article  CAS  PubMed  Google Scholar 

  • Yang H.-Y., Lieska N., Kriho V., Han J., and Pappas G. D. (1992c) Developmental-related expression of IFAP-300kDa in radial glia and their derivatives of rat spinal cord.Mol. Biol. Cell 3, Supplement, 357a.

    Article  Google Scholar 

  • Yang H.-Y., Lieska N., Glick R., Shao D., and Pappas G. D. (1993a) Expression of 300-kilodalton intermediate filament-associated protein distinguishes human glioma cells from normal astrocytes.Proc. Natl. Acad. Sci. USA 90, 8534–8537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H.-Y., Lieska N., Shao D., Kriho V., and Pappas G. D. (1993b) Immuno-typing of radial glia and their glial derivatives during development of the rat spinal cord.J. Neurocytol. 22, 558–571.

    Article  CAS  PubMed  Google Scholar 

  • Yen S.-H. and Fields K. L. (1981) Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system.J. Cell Biol. 88, 115–126.

    Article  CAS  PubMed  Google Scholar 

  • Yung W.-K. A., Luna M., and Borit A. (1985) Vimentin and glial fibrillary acidic protein in human brain tumors.J. Neuro-Oncol. 3, 35–38.

    Article  CAS  Google Scholar 

  • Zulch K. J. (1979)Histological Typing of Tumours of the Central Nervous System, World Health Organization, Geneva.

    Google Scholar 

  • Zulch K. J. (1986)Brain Tumors: Their Biology and Pathology, 3rd ed., Springer-Verlag, Berlin.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, HY., Lieska, N., Shao, D. et al. Proteins of the intermediate filament cytoskeleton as markers for astrocytes and human astrocytomas. Molecular and Chemical Neuropathology 21, 155–176 (1994). https://doi.org/10.1007/BF02815349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815349

Index Entries

Navigation