Skip to main content

Analysis of Morphology and Structural Remodeling of Astrocytes

  • Protocol
  • First Online:
Laser Scanning Microscopy and Quantitative Image Analysis of Neuronal Tissue

Part of the book series: Neuromethods ((NM,volume 87))

  • 1324 Accesses

Abstract

For a long time, the morphological study of astrocytes relied on immunostaining for astrocyte markers like GFAP, vimentin, or S100β. Though powerful, this method has several drawbacks, most notably that it does not reveal the full extent of individual cells. Modern labeling techniques and the availability of transgenic mice have circumvented this difficulty. Single-cell labeling techniques have revealed normal and reactive astrocytes in their true three-dimensional structure. It has furthermore become clear that astrocyte reactivity is a complex process that depends on the type of astrocyte, the nature of the injury, and the time that has passed since injury. Protoplasmic astrocytes tile the brain parenchyma and maintain their domain organization after at least some types of injury. Fibrous astrocytes do not tile and show a biphasic reaction to injury: a first phase of process retraction followed by a second phase of re-extension of processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed Central  PubMed  Google Scholar 

  2. Nag S (2011) Morphology and properties of astrocytes. Methods Mol Biol 686:69–100

    Article  CAS  PubMed  Google Scholar 

  3. Sun D, Jakobs TC (2012) Structural remodeling of astrocytes in the injured CNS. Neuroscientist 18(6):567–588

    Article  PubMed Central  PubMed  Google Scholar 

  4. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129(4):877–896

    Article  CAS  PubMed  Google Scholar 

  5. Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129(4):905–913

    Article  CAS  PubMed  Google Scholar 

  6. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14(4):265–277

    Article  CAS  PubMed  Google Scholar 

  7. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  8. Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643

    Article  CAS  PubMed  Google Scholar 

  9. Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32(3):160–169

    Article  CAS  PubMed  Google Scholar 

  10. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55(12):1263–1271

    Article  PubMed  Google Scholar 

  11. Stobart JL, Anderson CM (2013) Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 7:38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13(2):54–63

    Article  CAS  PubMed  Google Scholar 

  13. Woo DH et al (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151(1):25–40

    Article  CAS  PubMed  Google Scholar 

  14. Ben Achour S, Pascual O (2012) Astrocyte-neuron communication: functional consequences. Neurochem Res 37(11):2464–2473

    Article  CAS  PubMed  Google Scholar 

  15. Ullian EM et al (2001) Control of synapse number by glia. Science 291(5504):657–661

    Article  CAS  PubMed  Google Scholar 

  16. Ullian EM, Christopherson KS, Barres BA (2004) Role for glia in synaptogenesis. Glia 47(3):209–216

    Article  PubMed  Google Scholar 

  17. Christopherson KS et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433

    Article  CAS  PubMed  Google Scholar 

  18. Bushong EA et al (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192

    CAS  PubMed  Google Scholar 

  19. Halassa MM et al (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27(24):6473–6477

    Article  CAS  PubMed  Google Scholar 

  20. Sun D et al (2009) The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J Comp Neurol 516(1):1–19

    Article  PubMed Central  PubMed  Google Scholar 

  21. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54(1):15–36

    Article  CAS  PubMed  Google Scholar 

  22. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25(9–10):1439–1451

    Article  CAS  PubMed  Google Scholar 

  23. Sun D et al (2010) Structural remodeling of fibrous astrocytes after axonal injury. J Neurosci 30(42):14008–14019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zamanian JL et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18): 6391–6410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bardehle S et al (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16:580–586

    Article  CAS  PubMed  Google Scholar 

  26. Zhuo L et al (1997) Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 187(1):36–42

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki R et al (2003) A transgenic mouse model for the detailed morphological study of astrocytes. Neurosci Res 47(4):451–454

    Article  CAS  PubMed  Google Scholar 

  28. Cahoy JD et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278

    Article  CAS  PubMed  Google Scholar 

  29. Heintz N (2004) Gene expression nervous system atlas (GENSAT). Nat Neurosci 7(5):483

    Article  CAS  PubMed  Google Scholar 

  30. Doyle JP et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135(4):749–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yamaguchi M et al (2000) Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport 11(9):1991–1996

    Article  CAS  PubMed  Google Scholar 

  32. Vives V et al (2003) Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol 457(4):404–419

    Article  CAS  PubMed  Google Scholar 

  33. Eom TY et al (2011) Direct visualization of microtubules using a genetic tool to analyse radial progenitor-astrocyte continuum in brain. Nat Commun 2:446

    Article  PubMed Central  PubMed  Google Scholar 

  34. Feng G et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51

    Article  CAS  PubMed  Google Scholar 

  35. Kong JH et al (2005) Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J Comp Neurol 489(3):293–310

    Article  PubMed  Google Scholar 

  36. Nolte C et al (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33(1):72–86

    Article  CAS  PubMed  Google Scholar 

  37. Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2(3):175–186

    Article  PubMed Central  PubMed  Google Scholar 

  38. Livet J et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166): 56–62

    Article  CAS  PubMed  Google Scholar 

  39. Lichtman JW, Livet J, Sanes JR (2008) A technicolour approach to the connectome. Nat Rev Neurosci 9(6):417–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Johnston SA, Tang DC (1994) Gene gun transfection of animal cells and genetic immunization. Methods Cell Biol 43(Pt A): 353–365

    Article  CAS  PubMed  Google Scholar 

  41. Wellmann H, Kaltschmidt B, Kaltschmidt C (1999) Optimized protocol for biolistic transfection of brain slices and dissociated cultured neurons with a hand-held gene gun. J Neurosci Methods 92(1–2):55–64

    Article  CAS  PubMed  Google Scholar 

  42. McAllister AK (2000) Biolistic transfection of neurons. Sci STKE 2000(51):pl1

    CAS  PubMed  Google Scholar 

  43. Benediktsson AM et al (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Methods 141(1):41–53

    Article  PubMed  Google Scholar 

  44. Koizumi A et al (2007) Organotypic culture of physiologically functional adult mammalian retinas. PLoS One 2(2):e221

    Article  PubMed Central  PubMed  Google Scholar 

  45. Gan WB et al (2000) Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron 27(2):219–225

    Article  CAS  PubMed  Google Scholar 

  46. Jakobs TC et al (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313–325

    Article  CAS  PubMed  Google Scholar 

  47. Lohmann C, Myhr KL, Wong RO (2002) Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418(6894): 177–181

    Article  CAS  PubMed  Google Scholar 

  48. Butt AM, Ransom BR (1989) Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase. Glia 2(6):470–475

    Article  CAS  PubMed  Google Scholar 

  49. Binmoller FJ, Muller CM (1992) Postnatal development of dye-coupling among astrocytes in rat visual cortex. Glia 6(2):127–137

    Article  CAS  PubMed  Google Scholar 

  50. Butt AM, Ransom BR (1993) Morphology of astrocytes and oligodendrocytes during development in the intact rat optic nerve. J Comp Neurol 338(1):141–158

    Article  CAS  PubMed  Google Scholar 

  51. Butt AM et al (1994) Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. J Neurocytol 23(8):469–485

    Article  CAS  PubMed  Google Scholar 

  52. Konietzko U, Muller CM (1994) Astrocytic dye coupling in rat hippocampus: topography, developmental onset, and modulation by protein kinase C. Hippocampus 4(3):297–306

    Article  CAS  PubMed  Google Scholar 

  53. Sullivan SM et al (2010) Structural remodeling of gray matter astrocytes in the neonatal pig brain after hypoxia/ischemia. Glia 58(2): 181–194

    Article  PubMed  Google Scholar 

  54. Lin B et al (2000) Distribution of glycine receptor subunits on primate retinal ganglion cells: a quantitative analysis. Eur J Neurosci 12(12):4155–4170

    CAS  PubMed  Google Scholar 

  55. Lin B, Martin PR, Grunert U (2002) Expression and distribution of ionotropic glutamate receptor subunits on parasol ganglion cells in the primate retina. Vis Neurosci 19(4): 453–465

    Article  PubMed  Google Scholar 

  56. Jeon CJ et al (2002) Pattern of synaptic excitation and inhibition upon direction-selective retinal ganglion cells. J Comp Neurol 449(2): 195–205

    Article  PubMed  Google Scholar 

  57. Kao YH, Sterling P (2003) Matching neural morphology to molecular expression: single cell injection following immunostaining. J Neurocytol 32(3):245–251

    Article  PubMed  Google Scholar 

  58. Nimmerjahn A et al (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1(1):31–37

    Article  CAS  PubMed  Google Scholar 

  59. Nimmerjahn A, Helmchen F (2012) In vivo labeling of cortical astrocytes with sulforhodamine 101 (SR101). Cold Spring Harb Protoc 2012(3):326–334

    Article  PubMed  Google Scholar 

  60. Schnell C, Hagos Y, Hulsmann S (2012) Active sulforhodamine 101 uptake into hippocampal astrocytes. PLoS One 7(11):e49398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Appaix F et al (2012) Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes. PLoS One 7(4):e35169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    CAS  PubMed  Google Scholar 

  63. Schoenen J (1982) The dendritic organization of the human spinal cord: the dorsal horn. Neuroscience 7(9):2057–2087

    Article  CAS  PubMed  Google Scholar 

  64. Oberheim NA et al (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29(10):547–553

    Article  CAS  PubMed  Google Scholar 

  65. Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113(1):221–233

    Article  CAS  PubMed  Google Scholar 

  66. Wilhelmsson U et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA 103(46):17513–17518

    Article  CAS  PubMed  Google Scholar 

  67. Oberheim NA et al (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28(13):3264–3276

    Article  CAS  PubMed  Google Scholar 

  68. Waxman SG, Black JA (1984) Freeze-fracture ultrastructure of the perinodal astrocyte and associated glial junctions. Brain Res 308(1): 77–87

    Article  CAS  PubMed  Google Scholar 

  69. Oberheim NA et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jakobs, T.C. (2014). Analysis of Morphology and Structural Remodeling of Astrocytes. In: Bakota, L., Brandt, R. (eds) Laser Scanning Microscopy and Quantitative Image Analysis of Neuronal Tissue. Neuromethods, vol 87. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0381-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0381-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0380-1

  • Online ISBN: 978-1-4939-0381-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics