Skip to main content
Log in

GM1 monosialoganglioside pretreatment protects against soman-induced seizure-related brain damage

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

The effects of GM1 monosialoganglioside pretreatment on brain damage resulting from soman-induced seizure activity were examined in this study. Male Sprague-Dawley rats were infused with GM1 via an osmotic minipump connected through a permanent cannula implanted intracerebroventricularly and challenged with soman (83 μg/kg, i.e., 1.25 × LD50) 4 d after initiation of GM1 infusion. Electrocorticographic recordings were monitored via indwelling cortical electrodes. Twenty-seven hours after soman administration, anesthetized rats were euthanized via transcardial perfusion with buffered paraformaldehyde. Brains were processed for hematoxylin and eosin (H&E), cresyl violet (CV), and acetylcholinesterase (AChE) histochemistry, and glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2) immunohistochemistry. All soman-challenged rats not infused with GM1 (n=14) developed status epilepticus (SE). GM1-infused, soman-challenged rats (n=11) showed initial signs of seizures; however, only five developed SE. The remaining six recovered and had no brain damage. In addition, the latter group showed a significantly higher residual AChE reactivity in the basolateral amygdala compared to rats that developed SE. Quantitative image analysis of MAP2-immunostained brain sections from the five GM1-infused rats that developed SE showed a 85.9±14.1% reduction in cross-sectional area of necrosis in the piriform cortex when compared to the somanchallenged rats that were not infused with GM1. This was paralleled by a pronounced decrease in morphological evidence of damage on H&E and CV-stained serial sections. Considerable brain region/treatment group variability was seen with GFAP immunostaining. The present findings demonstrate that GM1 pretreatment interferes with the development of SE and significantly alleviates brain damage resulting from soman-induced seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando S. (1983) Gangliosides in the nervous system.Neurochem. Int. 5, 507–537.

    Article  CAS  PubMed  Google Scholar 

  • Bakhit C., Armanini M., Bennett G. L., Wong W. L., Hansen S. E. and Taylor R. (1991) Increase in glia-derived nerve growth factor following destruction of hippocampal neurons.Brain Res. 560, 76–83.

    Article  PubMed  CAS  Google Scholar 

  • Ballough G. P. H., Martin L. J., Cann F. J., Graham J. S., Smith C. D., Kling C. E., et al. (1995) Microtubule-associated protein 2 (MAP2): a sensitive marker of seizure-related brain damage.J. Neurosci. Methods 61, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt R. and Matus A. (1984) Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons,J. Comp. Neurol. 226, 203–221.

    Article  PubMed  CAS  Google Scholar 

  • Braitman D. J. and Sparenborg S. (1989) MK-801 protects against seizures induced by the cholinesterase inhibitor soman.Brain Res. Bull. 23, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Carolei A., Fieschi C., Bruno R., and Toffano G. (1991) Monosialoganglioside GM1 in cerebral ischemia.Cerebrovasc. Brain Metab. Rev. 3, 134–157.

    PubMed  CAS  Google Scholar 

  • Carpentier P., Delamanche I. S., Le Bert M., Blanchet G., and Bouchaud C. (1990) Seizurerelated opening of the blood-brain barrier induced by soman: possible correlation with the acute neuropathology observed in poisoned rats.NeuroToxicology 11, 493–508.

    PubMed  CAS  Google Scholar 

  • Choi D. W. (1987) Ionic dependence of glutamate neurotoxicity.J. Neurosci. 7(2), 369–379.

    PubMed  CAS  Google Scholar 

  • Choi D. W. (1992) Bench to bedside: the glutamate connection.Science 258, 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Connor J. A., Wadman W. J., and Hockberger P. E. (1988) Sustained dendritic gradients of Ca2+ induced by excitatory amino acid in CA1 hippocampal neurons.Science 240, 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Costa E., Armstrong D. M., Guidotti A., Kharlamov A., Kiedrowski L., Manev H., et al. (1994) Gangliosides in the protection against glutamate excitotoxicity, inProgress in Brain Research, vol. 101 (Svennerholm L., Asbury A. K., Reisfeld R. A., Sandhoff D., Suzuki K., Tettamanti G., et al., eds.), Elsevier, New York, pp. 357–373.

    Google Scholar 

  • Facci L., Leon A., and Skaper S. D. (1990a) Hypoglycemic neurotoxicity in vitro; involvement of excitatory amino acid receptors and attenuation by monosialoganglioside GM1.Neuroscience 37, 709–716.

    Article  PubMed  CAS  Google Scholar 

  • Facci L., Leon A., and Skaper S. D. (1990b) Excitatory amino acid neurotoxicity in cultured retinal neurons: involvement ofN-methyl-d-aspartate (NMDA) and non-NMDA receptors and effect of ganglioside GM1.J. Neurosci. Res. 27, 202–210.

    Article  PubMed  CAS  Google Scholar 

  • Favaron M., Manev H., Alho H., et al. (1988) Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex.Proc. Natl. Acad. Sci. USA 85, 7351–7355.

    Article  PubMed  CAS  Google Scholar 

  • Greene J. G. and Greenamyre J. T. (1996) Bioenergetics and glutamate excitotoxicity.Prog. Neurobiol. 48, 613–634.

    Article  PubMed  CAS  Google Scholar 

  • Hicks R. R., Smith D. H., and McIntosh T. K. (1995) Temporal response and effects of excitatory amino acid antagonism on microtubule-associated protein 2 immunoreactivity following experimental brain injury in rats.Brain Res. 678, 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Hsu S.-M., Raine L., and Fanger H. (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures.J. Histochem. Cytochem. 29, 577–580.

    PubMed  CAS  Google Scholar 

  • Hugon J., Vallet J. M., and Dumas M. (1996) Role of glutamate and excitotoxicity in neurologic diseases.Rev. Neurol. 154, 239–248.

    Google Scholar 

  • Karnovsky M. J. and Roots L. (1964) A “direct-coloring” thiocholine method for cholinesterases.J. Histochem. Cytochem. 12, 219–221.

    PubMed  CAS  Google Scholar 

  • Kitagawa K., Matsumoto M., Ninobe M., Mikoshiba K., Hata R., Ueda H., et al. (1989) Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage-immunohistochemical investigation of dendritic damage.Neuroscience 31, 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Kraig R. P., Lascola C. D., and Caggiano A. (1995) Glial response to brain ischemia, inNeuroglia (Kettenmann H. and Ransom B. R., eds.), pp. 964–976, Oxford University Press, New York.

    Google Scholar 

  • Ledeen R. W. (1984) Biology of gangliosides: neuritogenic and neuronotrophic properties.J. Neurosci. Res. 12, 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Lemercier G., Carpentier P., Sentenac-Roumanou H., and Morelis P. (1983) Histological and histochemical changes in the central nervous system of the rat poisoned by an irreversible anticholinesterase organophosphorus compound.Acta Neuropathol. 61, 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi G. and Moroni F. (1992) GM1 ganglioside reduces ischemia-induced excitatory amino acid output: a microdialysis study in the gerbil hippocampus.Neurosci. Lett. 134, 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Mahadik S. P., Vilim F., Korenovsky A., and Karpiak S. E. (1988) GM1 ganglioside protects nucleus basalis from excitotoxin damage: reduced cortical cholinergic losses and animal mortality.J. Neurosci. Res. 20, 479–483.

    Article  PubMed  CAS  Google Scholar 

  • Malhotra S. K., Shnitka T. K., and Elbrink J. (1990) Reactive astrocytes: a review.Cytobios 61, 133–160.

    PubMed  CAS  Google Scholar 

  • Manev H., Costa E., Wroblewski J. T., and Guidotti A. (1990a) Abusive stimulation of excitatory amino acid receptors: a strategy to limit neurotoxicity.FASEB J. 4, 2789–2797.

    PubMed  CAS  Google Scholar 

  • Manev H., Favaron M., Vicini S., Guidotti A., and Costa E. (1990b) Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids.J. Pharmacol. Exper. Ther. 252, 419–427.

    CAS  Google Scholar 

  • Manev, H., Guidotti A., and Costa E. (1991) Neuroprotective effects of glycosphingolipids in in-vitro and in-vivo models of neurotoxicity, inProceedings of the 1991 Medical Defense Bioscience Review, pp. 401–405, DTIC Accession #AD B158-588.

  • Manev H., Guidotti A., and Costa E. (1993) Protection by gangliosides against glutamate excitotoxicity.Adv. Lipid Res. 25, 269–288.

    PubMed  CAS  Google Scholar 

  • Matus A. (1994) MAP2, inMicrotubules (Hyams J. S. and Lloyd C. W., eds.), Wiley-Liss, New York, NY, pp. 155–166.

    Google Scholar 

  • Maysinger D., Herrera-Marschitz M., Ungerstedt U., and Cuello A. C. (1990) Acetylcholine release in vivo: effects of chronic treatment with monosialoganglioside GM1.Neuropharmacology 29, 151–159.

    Article  PubMed  CAS  Google Scholar 

  • McDonough J. H., Jr., and Shih T.-M. (1993) Pharmacological modulation of soman-induced seizures.Neurosci. Biobehav. Rev. 17, 203–215.

    Article  PubMed  CAS  Google Scholar 

  • McDonough J. H., Jr., McLeod C. G., Jr., and Nipwoda T. (1987) Direct microinjection of soman or VX into the amygdala produces repetitive limbic convulsions and neuropathology.Brain Res. 435, 123–137.

    Article  PubMed  CAS  Google Scholar 

  • McLeod C. G., Jr., Singer A. W., and Harrington D. G. (1984) Acute neuropathology in soman poisoned rats.NeuroToxicology 5, 53–58.

    PubMed  CAS  Google Scholar 

  • Montgomery D. L. (1994) Astrocytes: form, function, and roles in disease: Review.Vet. Pathol. 31, 145–167.

    Article  PubMed  CAS  Google Scholar 

  • O'Callaghan J. P. and Jensen K. F. (1992) Enhanced expression of glial fibrillary acidic protein and the cupric silver degeneration reaction can be used as sensitive and early indicators of neurotoxicity.NeuroToxicology 13, 113–122.

    PubMed  Google Scholar 

  • Olney J. W., De Gubareff T., and Labruyere J. (1983) Seizure-related brain damage induced by cholinergic agents.Nature 301, 520–522.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G. and Watson C. (1986)The Rat Brain in Stereotaxic Coordinates, 2nd ed., Academic, New York, NY.

    Google Scholar 

  • Pazdernik T. L., Cross R., Giesler M., Nelson S., Samson F., and McDonough J., Jr. (1985) Delayed effects of soman: brain glucose use and pathology.NeuroToxicology 6, 61–70.

    PubMed  CAS  Google Scholar 

  • Pechan P. A., Yoshida T., Panahian N., Moskowitz M. A., and Breakefield X. O. (1995) Genetically modified fibroblasts producing NGF protect hippocampal neurons after ischemia in the rat.NeuroReport 6, 669–672.

    Article  PubMed  CAS  Google Scholar 

  • Petrali J. P., Maxwell D. M., Lenz D. E., and Mills K. R. (1991) Effect of an anticholinesterase compound on the ultrastructure and function of the rat blood-brain barrier: a review and experiment.J. Submicrosc. Cytol. Pathol. 23, 331–338.

    PubMed  CAS  Google Scholar 

  • Petras J. M. (1981) Soman neurotoxicity.Fundam. Appl. Toxicol. 1, 242.

    Article  PubMed  CAS  Google Scholar 

  • Phillis J. W. and O'Regan M. H. (1995) GM1 ganglioside inhibits ischemic release of amino acid neurotransmitters from rat cortex.NeuroReport 23, 2010–2016.

    Article  Google Scholar 

  • Polo A., Kirschner G., Guidotti A., and Costa E. (1994) Brain content of glycosphin-golipids after oral administration of monosialogangliosides GM1 and LIGA20 to rats.Mol. Chem. Neuropathol. 21, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Powers M. and Clark G. (1955) An evaluation of cresyl echt violet as a Nissl stain.Stain Technol. 30, 83–92.

    PubMed  CAS  Google Scholar 

  • Rabin S. J. and Mocchetti I. (1995) GM1 ganglioside activates the high-affinity nerve growth factor receptortrkA.J. Neurochem. 65, 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Randall R. D. and Thayer S. A. (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons.J. Neurosci. 12, 1882–1895.

    PubMed  CAS  Google Scholar 

  • Saqr H. E., Pearl D. K., and Yates A. J. (1993) A review and predictive models of ganglioside uptake by biological membranes.J. Neurochem. 61, 395–411.

    Article  PubMed  CAS  Google Scholar 

  • Semkova I., Schilling M., Henrich-Noack P., Rami A., and Krieglstein J. (1996a) Clenbuterol protects mouse cerebral cortex and rat hippocampus from ischemic damage and attenuates glutamate neurotoxicity in cultured hippocampal neurons by induction of NGF.Brain Res. 717, 44–54.

    Article  PubMed  CAS  Google Scholar 

  • Semkova I., Wolz P., Schilling M., and Krieglstein J. (1996b) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage.Eur. J. Pharmacol. 315, 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Silver B., Weber J., and Fisher M. (1996) Medical therapy for ischemic stroke: review.Clin. Neuropharm. 19, 101–128.

    Article  CAS  Google Scholar 

  • Skaper S. D., Facci L., Milani D., and Leon A. (1989) Monosialoganglioside GM1 protects anoxia-induced neuronal death in vitro.Exp Neurol. 106, 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Skaper S. D., Facci L., and Leon A. (1990) Gangliosides attenuate the delayed neurotoxicity of aspartic acid in vitro.Neurosci. Lett. 117, 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Skaper S. D., Leon A., and Facci L. (1991) Ganglioside GM1 prevents death induced by excessive excitatory neurotransmission in cultured hippocampal pyramidal neurons.Neurosci. Lett. 126, 98–101.

    Article  PubMed  CAS  Google Scholar 

  • Sparenborg S., Brennecke L. H., Jaax N. K., and Braitman D. J. (1992) Dizocilpine (MK-801) arrests status epilepticus and prevents brain damage induced by soman.Neuropharmacology 31, 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Switzer R. C. (1991) Strategies for assessing neurotoxicity,Neurosci. Biobehav. Rev. 15, 89–93.

    Article  PubMed  Google Scholar 

  • Tan W. K. M., Williams C. E., Gunn A. J., Mallard E. C., and Gluckman P. D. (1993) Pretreatment with monosialoganglioside GM1 protects the brain of fetal sheep against hypoxic/ischemic injury without causing systemic compromise.Pediatr. Res. 34, 18–22.

    PubMed  CAS  Google Scholar 

  • Tan W. K. M., Williams C. E., Mallard E. C., and Gluckman P. D. (1994) Monosialoganglioside GM1 treatment after a hypoxic/ischemic episode reduces the vulnerability of the fetal sheep brain to subsequent injuries.Am. J. Obstet. Gynecol. 170, 663–670.

    PubMed  CAS  Google Scholar 

  • Toffano G., Benvegnu D., Bonetti A. C., Facci L., Leon A., Orlando P., et al. (1980) Interactions of GM1 ganglioside with crude rat brain neuronal membranes.J. Neurochem. 35, 861–866.

    Article  PubMed  CAS  Google Scholar 

  • Torgner I. and Kvamme E. (1990) Synthesis of transmitter glutamate and the glial-neuron interrelationship.Mol. Chem. Neuropathol. 12, 11–17.

    PubMed  CAS  Google Scholar 

  • Tuor U. I., Del Bigio M. R., and Chumas P. D. (1996) Brain damage due to cerebral hypoxia/ischemia in the neonate: pathology and pharmacological modification.Cerebrovasc. Brain Metab. Rev. 8, 159–193.

    PubMed  CAS  Google Scholar 

  • Watson R. E., Wiegand S. J., Clough R. W., and Hoffman G. E. (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology.Peptides 7, 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Wiche G. (1989) High-Mr microtubule-associated proteins: properties and functions: review article.Biochem. J. 259, 1–12.

    PubMed  CAS  Google Scholar 

  • Wojcik M., Ulas J., and Oderfeld-Nowak B. (1982) The stimulating effect of ganglioside injections on the recovery of choline acetyltransferase and acetylcholinesterase activities in the hippocampus of the rat after septal lesions.Neuroscience 7, 495–499.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K. and Toya S. (1997) Neurotrophic activity in cytokine-activated astrocytes.Keio J. Med. 46, 55–60.

    PubMed  CAS  Google Scholar 

  • Yu R. K., Goldenring J. R., Kim J. Y. H., and DeLorenzo R. J. (1986) Gangliosides as differential modulators of membrane-bound protein kinase systems, inFidia Research Series: Gangliosides and Neuronal Plasticity, vol. 6 (Tettamanti G., Ledeen R. W., Sandhoff K., Nagai Y., and Toffano G., eds.), pp. 95–104, Liviana, Padova.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as the views of the Department of the Army. In conducting the research described in this article, the investigators adhered to the “Guide for the Care and Use of Laboratory Animals” as adopted and promulgated by the National Institutes of Health publication 96-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballough, G.P.H., Cann, F.J., Smith, C.D. et al. GM1 monosialoganglioside pretreatment protects against soman-induced seizure-related brain damage. Molecular and Chemical Neuropathology 34, 1–23 (1998). https://doi.org/10.1007/BF02815133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815133

Index Entries

Navigation