Skip to main content
Log in

The Effects of Amiloride on Seizure Activity, Cognitive Deficits and Seizure-Induced Neurogenesis in a Novel Rat Model of Febrile Seizures

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Accumulating data suggest that sodium–hydrogen exchangers (NHEs) play a key role in modulating seizure activity by regulating neuronal pH in the brain. Amiloride, an inhibitor of NHEs, has been demonstrated to be effective in many seizure models, although its efficacy for prolonged febrile seizures (FS) remains unclear. In this study, we investigated whether amiloride could produce neuroprotective effects in a prolonged FS model in which FS were induced in rat pups at postnatal day 10 using a heated air approach. Amiloride was administered by intraperitoneal injection at three different doses (0.65, 1.3 and 2.6 mg/kg). Pretreatment with amiloride significantly delayed the onset of the first episode of limbic seizures, whereas posttreatment with amiloride decreased escape latency in the Morris water maze test compared to post-FS treatment with saline. Amiloride also inhibited seizure-induced aberrant neurogenesis. In conclusion, this study demonstrated the antiseizure activity of amiloride. In particular, posttreatment with amiloride resulted in cognitive improvement; this finding provides crucial evidence of the neuroprotective function of amiloride and of the therapeutic potential of amiloride in FS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeong JH, Lee JH, Kim K, Jo YH, Rhee JE, Kwak YH, Kim DK, Noh H (2014) Rate of and risk factors for early recurrence in patients with febrile seizures. Pediatr Emerg Care 30:540–545

    Article  PubMed  Google Scholar 

  2. Seinfeld DS, Pellock JM (2013) Recent research on febrile seizures: a review. J Neurol Neurophysiol 4:1–14

    Google Scholar 

  3. Patterson JL, Carapetian SA, Hageman JR, Kelley KR (2013) Febrile seizures. Pediatr Ann 42:249–254

    Article  PubMed  Google Scholar 

  4. Fetveit A (2008) Assessment of febrile seizures in children. Eur J Pediatr 167:17–27

    Article  PubMed  Google Scholar 

  5. Pediatrics AAo (2011) Neurodiagnostic evaluation of the child with a simple febrile seizure. Pediatrics 127:389

    Article  Google Scholar 

  6. Martinos MM, Yoong M, Patil S, Chin RF, Neville BG, Scott RC, de Haan M (2012) Recognition memory is impaired in children after prolonged febrile seizures. Brain 135:3153–3164

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang L, Li F, Zhang H, Ge W, Mi C, Sun R, Liu C (2009) Astrocyte activation and memory impairment in the repetitive febrile seizures model. Epilepsy Res 86:209–220

    Article  CAS  PubMed  Google Scholar 

  8. Chang YC, Huang AM, Kuo YM, Wang ST, Chang YY, Huang CC (2003) Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol 54:706–718

    Article  CAS  PubMed  Google Scholar 

  9. Millar JS (2006) Evaluation and treatment of the child with febrile seizure. Am Fam Physician 73:1761–1764

    PubMed  Google Scholar 

  10. Wheless JW, Clarke DF, Carpenter D (2005) Treatment of pediatric epilepsy: expert opinion, 2005. J Child Neurol 20(Suppl 1):S1–S56

    PubMed  Google Scholar 

  11. Bergman DA, Baltz RD, Cooley JR, Hickson GB, Miles PV, Shook JE, Zurhellen WM (1999) Practice parameter: long-term treatment of the child with simple febrile seizures. Pediatrics 103:1307–1309

    Article  Google Scholar 

  12. Shinnar S, Glauser TA (2002) Febrile seizures. J Child Neurol 17(Suppl 1):S44–S52

    Article  PubMed  Google Scholar 

  13. Simonato M, French JA, Galanopoulou AS, O’Brien TJ (2013) Issues for new antiepilepsy drug development. Curr Opin Neurol 26:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ali A, Ahmad F, Dua Y, Pillai K, Vohora D (2008) Seizures and sodium hydrogen exchangers: potential of sodium hydrogen exchanger inhibitors as novel anticonvulsants. CNS Neurol Disord Drug Targets 7:343–347

    Article  CAS  PubMed  Google Scholar 

  15. Villafuerte FC, Swietach P, Youm JB, Ford K, Cardenas R, Supuran CT, Cobden PM, Rohling M, Vaughan-Jones RD (2014) Facilitation by intracellular carbonic anhydrase of Na+–HCO3− co-transport but not Na+/H+ exchange activity in the mammalian ventricular myocyte. J Physiol 592:991–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verma V, Bali A, Singh N, Jaggi AS (2015) Implications of sodium hydrogen exchangers in various brain diseases. J Basic Clin Physiol Pharmacol 26:417–426

    Article  CAS  PubMed  Google Scholar 

  17. N’Gouemo P (2008) Amiloride delays the onset of pilocarpine-induced seizures in rats. Brain Res 1222:230–232. doi:10.1016/j.brainres.2008.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  18. Luszczki J, Czernecki R, Wojtal K, Borowicz K, Czuczwar S (2008) Agmatine enhances the anticonvulsant action of phenobarbital and valproate in the mouse maximal electroshock seizure model. J Neural Trans 115:1485–1494. doi:10.1007/s00702-008-0046-3

    Article  CAS  Google Scholar 

  19. Ali A, Ahmad FJ, Pillai KK, Vohora D (2004) Evidence of the antiepileptic potential of amiloride with neuropharmacological benefits in rodent models of epilepsy and behavior. Epilepsy Behav 5:322–328. doi:10.1016/j.yebeh.2004.01.005

    Article  PubMed  Google Scholar 

  20. Shapiro LA, Ribak CE, Jessberger S (2008) Structural changes for adult-born dentate granule cells after status epileptic us. Epilepsia 49:13–18

    Article  PubMed  Google Scholar 

  21. Eghbal-Ahmadi M, Avishai-Eliner S, Hatalski CG, Baram TZ (1999) Differential regulation of the expression of corticotropin-releasing factor receptor type 2 (CRF2) in hypothalamus and amygdala of the immature rat by sensory input and food intake. J Neurosci 19:3982–3991

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Baram TZ, Gerth A, Schultz L (1997) Febrile seizures: an appropriate-aged model suitable for long-term studies. Brain Res Dev Brain Res 98:265–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuchmann S, Schmitz D, Rivera C, Vanhatalo S, Salmen B, Mackie K, Sipilä ST, Voipio J, Kaila K (2006) Experimental febrile seizures are precipitated by a hyperthermia induced respiratory alkalosis. Nat Med 12:817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sarkisian MR, Holmes GL, Carmant L, Liu Z, Yang Y, Stafstrom CE (1999) Effects of hyperthermia and continuous hippocampal stimulation on the immature and adult brain. Brain Dev 21:318–325

    Article  CAS  PubMed  Google Scholar 

  25. Prévost F, Costa M, Carmant L, Lepore F, Guillemot J-P (2010) Effects of hyperthermic seizures on the developing primary visual cortex of the rat. Neuroscience 171:1120–1130

    Article  PubMed  Google Scholar 

  26. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698. doi:10.1016/j.cell.2004.08.026

    Article  CAS  PubMed  Google Scholar 

  27. Chesler M, Kaila K (1992) Modulation of pH by neuronal activity. Trends Neurosci 15:396–402

    Article  CAS  PubMed  Google Scholar 

  28. Yao H, Ma E, Gu XQ, Haddad GG (1999) Intracellular pH regulation of CA1 neurons in Na+/H+ isoform 1 mutant mice. J Clin Invest 104:637–645. doi:10.1172/JCI6785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Puka N, Lehmann A (1994) In vivo acidosis reduces extracellular concentrations of taurine and glutamate in the rat hippocampus. J Neurosci Res 37:641–646

    Article  CAS  PubMed  Google Scholar 

  30. Chu XP, Xiong ZG (2012) Physiological and pathological functions of acid-sensing ion channels in the central nervous system. Curr Drug Targets 13:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rajab E, Abdeen Z, Hassan Z, Alsaffar Y, Mandeel M, Al Shawaaf F, Al-Ansari S, Kamal A (2014) Cognitive performance and convulsion risk after experimentally-induced febrile-seizures in rat. Int J Dev Neurosci 34:19–23

    Article  PubMed  Google Scholar 

  32. Xiong Y, Zhou H, Zhang L (2014) Influences of hyperthermia-induced seizures on learning, memory and phosphorylative state of CaMKII α in rat hippocampus. Brain Res 1557:190–200

    Article  CAS  PubMed  Google Scholar 

  33. Tsai ML, Hung KL, Tsan YY, Tung WT (2015) Long-term neurocognitive outcome and auditory event-related potentials after complex febrile seizures in children. Epilepsy Behav 47:55–60. doi:10.1016/j.yebeh.2015.04.067

    Article  PubMed  Google Scholar 

  34. Jessberger S, Nakashima K, Clemenson GD Jr, Mejia E, Mathews E, Ure K, Ogawa S, Sinton CM, Gage FH, Hsieh J (2007) Epigenetic modulation of seizure-induced neurogenes is and cognitive decline. J Neurosci 27:5967–5975

    Article  CAS  PubMed  Google Scholar 

  35. Chena J, Quana Q-Y, Yang F, Wang Y, Wang J-C, Zhao G, Jiang W (2010) Effects of lamotrigine and topiramate on hippocampal neurogenesis in experimental temporal-lobe epilepsy. Brain Res 1313:270–282

    Article  Google Scholar 

  36. Bender RA, Dubé C, Gonzalez-Vega R, Mina EW, Baram TZ (2003) Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus 13:399–412

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hung YW, Yang DI, Huang PY, Lee TS, Kuo TB, Yiu CH, Shih YH, Lin YY (2012) The duration of sustained convulsive seizures determines the pattern of hippocampal neurogenesis and the development of spontaneous epilepsy in rats. Epilepsy Res 98:206–215. doi:10.1016/j.eplepsyres.2011.09.015

    Article  PubMed  Google Scholar 

  38. Shi X-Y, Sun R-P, Wang J-W (2007) Consequences of pilocarpine-induced recurrent seizures in neonatal rats. Brain Dev 29:157–163

    Article  Google Scholar 

  39. Willems L, Tamburini J, Chapuis N, Lacombe C, Mayeux P, Bouscary D (2012) PI3K and mTOR signaling pathways in cancer: new data on targeted therapies. Curr Oncol Rep 14:129–138. doi:10.1007/s11912-012-0227-y

    Article  CAS  PubMed  Google Scholar 

  40. Tang JY, Chang HW, Chang JG (2013) Modulating roles of amiloride in irradiation-induced antiproliferative effects in glioblastoma multiforme cells involving Akt phosphorylation and the alternative splicing of apoptotic genes. DNA Cell Biol 32:504–510. doi:10.1089/dna.2013.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation of China (Grant Numbers 81071051, 81271432). The funders played no role in study design, data collection and analysis, the decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Tang-Peng Ou-Yang and Ge-Min Zhu have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou-Yang, TP., Zhu, GM., Ding, YX. et al. The Effects of Amiloride on Seizure Activity, Cognitive Deficits and Seizure-Induced Neurogenesis in a Novel Rat Model of Febrile Seizures. Neurochem Res 41, 933–942 (2016). https://doi.org/10.1007/s11064-015-1777-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1777-9

Keywords

Navigation