Skip to main content
Log in

Effects of valproate on amino acid and monoamine concentrations in striatum of audiogenic seizure-prone balb/c mice

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

The effects of aalproate on CNS concentrations of γ-aminobutyric acid (GABA), glutamate (GLU), glutamine (GLN), dopamine (DA), serotonin (5-HT), and metabolites were examined in tissue extracts of caudate nucleus of genetic substrains of Balb/c mice susceptible (EP) or resistant (ER) to audiogenic seizures. Generalized tonic-clonic seizures observed in EP mice were inhibited by valproate, administered 1 h prior to testing, in a dose-response fashion. Concentrations of GABA, GLU, and GLN, which were lower in EP mice than in ER mice, were significantly increased by valproate at doses of 180 and 360 mg/kg. Concentrations of homovanillic acid (HVA) and hydroxyindoleacetic acid (5-HIAA), metabolites of DA and 5-HT were substantially increased by valproate at these doses. Thein situ activity of tyrosine hydroxylase (TH) was not significantly influenced by valproate, whereas a valproate-induced increase in tryptophan hydroxylase (TPH) activity was observed in both striatum and in midbrain tegmentum. The data are consistent with the interpretation that anticonvulsive doses of valproate influences the intraneuronal metabolism of monoamines, GABA, and glutamate concurrently. Valproate’s influence on the metabolism of both major inhibitory (GABA) and excitatory (GLU) amino acids in striatum could contribute to its anticonvulsive effects in genetically seizure-prone mice, as well as to the accumulation of DA and 5-HT metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Tajir G., Chandler C. J., Starr B. S., and Star M. S. (1990) Opposite effects of stimulation of D1 and D2 dopamine receptors on the expression of motor seizures in mouse and rat.Neuropharmacology 29, 657–661.

    Article  PubMed  CAS  Google Scholar 

  • Anlezark G., Horton R. W., Meldrum S. S., and Sawaya M. C. B. (1976) Anticonvulsant action of ethanolamine-O-sulphate and di-n-propylacetate and the metabolism of γ-aminobutyric acid (GABA) in mice with audiogenic seizures.Biochem. Pharmacol. 25, 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Biggs C. S., Pearce B. R., Fowler L. J., and Whitton P. S. (1992) Regional effects of sodium valproate on extracellular concentrations of 5-hydroxytryptamine, dopamine, and their metabolites in the rat brain anin vivo microdialysis study.J. Neurochem. 59, 1702–1708.

    Article  PubMed  CAS  Google Scholar 

  • Browning R. A. (1986) Neurobiology of seizure disposition in the genetically epilepsy-prone rat. Neuroanatomical localization of structures responsible for seizures in the GEPR: Lesion studies.Life Sci. 39, 857–867.

    Article  PubMed  CAS  Google Scholar 

  • Browning R., Nelson D., Mogharreban N., Jobe P., and Laird H. (1985) Effect of midbrain and pontine tegmental lesions of audiogenic seizures in genetically epilepsy-prone rats.Epilepsia 26, 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A., Davis J. N., Kehr W., Lindqvist M., and Atack C. V. (1972) Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brainin vivo using an inhibitor of the aromatic amino acid decarboxylase.Arch. Pharmacol. 275, 153–168.

    Article  CAS  Google Scholar 

  • Chapman A., Keane P. E., Meldrum B. S., Simiand J., and Vernieres J. C. (1982a) Mechanism of anticonvulsant action of valproate.Prog. Neurobiol. 19, 315–359.

    Article  PubMed  CAS  Google Scholar 

  • Chapman A. G., Riley K., Evans M. C., and Meldrum B. S. (1982b) Acute effects of sodium valproate and γ-vinyl GABA on regional amino acid metabolism in the rat brain: Incorporation of 2-(14C)-glucose into amino acids.Neurochem. Res. 7, 1089–1105.

    Article  PubMed  CAS  Google Scholar 

  • Chapman A. G., Meldrum B. S., Nanji N., and Watkins J. C. (1987) Anticonvulsant action and biochemical effects in DBA/2 mice of CPP (3-((+/−)-2-carboxypiperazin-4-yl)-propyl-1-phosphonate), a novelN-methyl-d-aspartate antagonist.Eur. J. Pharmacol. 139, 91–96.

    Article  PubMed  CAS  Google Scholar 

  • Faingold C. L., Randall M. E., Naritoku D. K., and Boersma-Anderson C. A. (1993) Noncompetitive and competitive NMDA antagonists exert anticonvulsant effects by actions on different sites within the neuronal network for audiogenic seizures.Exp. Neurol. 119, 198–204.

    Article  PubMed  CAS  Google Scholar 

  • Fohlmeister J., Adelman W., and Breman J. (1984) Excitable channel currents and gating times in the presence of anticonvulsants, ethosuximide and valproate.J. Pharmacol. Exp. Ther. 230, 75–81.

    PubMed  CAS  Google Scholar 

  • Gale K. and Browning R. A. (1988) Anatomical and neurochemical substrates of clonic and tonic seizures, inMechanims of Epileptogenesis (Dichter M. A., ed.), pp. 111–152. Phenum, New York.

    Google Scholar 

  • Gamache P., Ryan E., Svendsen C., Murayama K., and Acworth I. N. (1993) Simultaneous measurement of monoamines, metabolites and amino acids in brain tissue and microdialysis perfusates.J. Chromatog. 614, 213–220.

    Article  CAS  Google Scholar 

  • Godin Y., Heiner L., Mark J., and Mandel P. (1969) Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism.J. Neurochem. 16, 869–873.

    Article  PubMed  CAS  Google Scholar 

  • Grace A. A. and Bunney B. S. (1979) Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons.Eur. J. Pharmacol. 59, 211–218.

    Article  PubMed  CAS  Google Scholar 

  • Horton R. W., Anglezark G. M., Sawaya C. B., and Meldrum S. S. (1977) Monoamine and GABA metabolism and the anticonvulsant action of di-n-propylacetate and ethanolamine-O-sulphate.Eur. J. Pharmacol. 41, 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Iadarola M. J., Raines A., and Gale K. (1979) Differential effects of n-dipropylacetate and amino-oxyacetic acid on gamma-aminobutyric acid levels in discrete areas of rat brain.J. Neurochem. 33, 1119–1123.

    Article  PubMed  CAS  Google Scholar 

  • Iadarola M. and Gale K. (1982) Substantia nigra: site of anticonvulsant activity mediated by gammabutyric acid.Science 218, 1237–1240.

    Article  PubMed  CAS  Google Scholar 

  • Kesner R. (1966) Subcortical mechanisms of audiogenic seizures.Exp. Neurol. 15, 192–205.

    Article  PubMed  CAS  Google Scholar 

  • Klockgether T., Turski L., Honore T., Zhang Z. M., Gash D. M., Kurlan R., and Greenamyre J. T. (1991) The AMPA receptor antagonist NBQX has antipark-insonian effects in monoamine-depleted rats and MPTP-treated monkeys.Ann. Neurol. 30, 717–723.

    Article  PubMed  CAS  Google Scholar 

  • Kreigstein A. R. (1988) The pathogenesis of epilepsy: relevance to therapy.Curr. Opin. Neurol. Neurosurg. 1, 200–205.

    Google Scholar 

  • Kukino K. and Deguchi T. (1977) Effects of sodium dipropylacetate and γ-aminobutyric acid and biogenic amines in rat brain.Chem. Pharm. Bull. 25, 2257–2262.

    PubMed  CAS  Google Scholar 

  • Lehmann J. Chapman A. G., Meldrum B. S., Hutchison A., Tsai C., and Wood P. L. (1988) CGS 19755 is a potent and competitive antagonist at NMDA-type receptors.Eur. J. Pharmacol. 154, 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Loscher W. (1981) Valproate induced changes in GABA metabolism at the subcellular level.Biochem. Pharmacol. 30, 1364–1366.

    Article  PubMed  CAS  Google Scholar 

  • Loscher W. (1989) Valproate enhances GABA turnover in the substantia nigra.Brain Res. 501, 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Loscher W. (1993) Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain.Neurochem. Res. 18, 485–502.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald R. L. and Kelly K. M. (1993) Antiepileptic drug mechanisms of action.Epilepsia 34, S1–8.

    Article  Google Scholar 

  • MacMillian V. (1979) The effects of the anticonvulsant valproic acid on cerebral indole amine metabolism.Can. J. Physiol. Pharmacol. 57, 843–847.

    Google Scholar 

  • McLean M. and Macdonald R. (1986) Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture.J. Pharmacol. Exp. Ther. 237, 1001–1011.

    PubMed  CAS  Google Scholar 

  • Miller J. W. and Ferrendelli J. A. (1988) Some subcortical mechanisms involved in experimental generalized seizures, inMechanisms of Epileptogenesis (Dichter M. A., ed.), pp. 101–110, Plenum, New York.

    Google Scholar 

  • Mitsikostas D., Sfikakis A., Papadopoulou-Daifoti Z., and Varonos D. (1993) The effects of valproate in brain monomanies of juvenile rats after stress.Prog. Neurospsychopharmacol.Biol. Psychiatry 17, 295–310.

    Article  CAS  Google Scholar 

  • Nichols A. C. and Yielding K. L. (1993) Anticonvulsant activity of antagonists for the NMDA-associated glycine binding site.Mol. Chem. Neuropathol. 19, 269–282.

    Article  PubMed  CAS  Google Scholar 

  • Preisendorfer U., Zeise M. L., and Klee M. R. (1987) Valproate enhances inhibitory postsynaptic potentials in hippocampal neurons in vitro.Brain Res. 435, 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Sawaya M. C. B., Horton R. W., and Meldrum B. S. (1975) Effects of anticonvulsant drugs on the cerebral enzymes metabolising GABA.Epilepsia 16, 649–655.

    Article  PubMed  CAS  Google Scholar 

  • Semenova T. P. and Ticku M. K. (1992) Effects of 5-HT receptor antagonists on seizure-susceptibility and locomotor activity in DBA/2 mice.Brain Res. 588, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Simler S., Ciesielski L., Maitre M., Randrianarisoa H., and Mandel P. (1973) Effect of sodiumn-dipropylacetate on audiogenic seizures and brain γ-aminobutyric acid level.Biochem. Pharmacol. 22, 1701–1708.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen C., Klitgaard H., Sheardown M., Jackson H. C., Eskesen K., Jacobsen P. Treppendahl S., and Suzdak P. D. (1994) (S)-4-carboxy-3-hydroxyphenyl-glycine, an agtagonist of metabotrophic glutamate receptor (mGluR) 1a and an agonist of mGluR2, protects against audiogenic seizures in DBA/2 mice.J. Neurochem. 62L, 2492–2495.

    Google Scholar 

  • Turski L., Meldrum B., Cavalheiro E., Calderazzo-Filho L., Bortolotto Z., Ikonomidou-Turski C., and Turski W. (1987) Paradoxical anticonvulsant activity of the excitatory amino acid N-methl-d-aspartate in the rat caudate-putamen.Proc. Natl. Acad. Sci. USA 84, 1689–1693.

    Article  PubMed  CAS  Google Scholar 

  • Vriend J., Alexiuk N. A. M., Green-Johnson J., and Ryan R. (1993) Determination of amino acids and monoamine neurotransmitters in caudate nucleus of seizure-resistant and seizure-prone Balb/c mice.J. Neurochem. 60, 1300–1307.

    Article  PubMed  CAS  Google Scholar 

  • Whitton P. S., Oreskovic D., Markovic Z., Skarpa D., and Bulat M. (1983) Effect of the antiepiletic DI-n-propylacetamide on 5-hydroxytryptamine turnover in the brain and 5-hydroxyindoleacetic acid level in the cerebrospinal fluid.Eur. J. Pharmacol. 91, 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Whitton P. S., Oreskovic D., Jernej B., and Bulat M. (1985) Effect of valproic acid on 5-hydroxytryptamine turnover in mouse brain.J. Pharm. Pharmacol. 37, 199–200.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vriend, J.P., Alexiuk, N.A.M. Effects of valproate on amino acid and monoamine concentrations in striatum of audiogenic seizure-prone balb/c mice. Molecular and Chemical Neuropathology 27, 307–324 (1996). https://doi.org/10.1007/BF02815111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815111

Index Entries

Navigation